Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.
BackgroundThe identification of blood-based biomarkers specific to the diagnosis of amyotrophic lateral sclerosis (ALS) is an active field of academic and clinical research. While inheritance studies have advanced the field, a majority of patients do not have a known genetic link to the disease, making direct sequence-based genetic testing for ALS difficult. The ability to detect biofluid-based epigenetic changes in ALS would expand the relevance of using genomic information for disease diagnosis.MethodsAssessing differences in chromosomal conformations (i.e. how they are positioned in 3-dimensions) represents one approach for assessing epigenetic changes. In this study, we used an industrial platform, EpiSwitch™, to compare the genomic architecture of healthy and diseased patient samples (blood and tissue) to discover a chromosomal conformation signature (CCS) with diagnostic potential in ALS. A three-step biomarker selection process yielded a distinct CCS for ALS, comprised of conformation changes in eight genomic loci and detectable in blood.FindingsWe applied the ALS CCS to determine a diagnosis for 74 unblinded patient samples and subsequently conducted a blinded diagnostic study of 16 samples. Sensitivity and specificity for ALS detection in the 74 unblinded patient samples were 83∙33% (CI 51∙59 to 97∙91%) and 76∙92% (46∙19 to 94∙96%), respectively. In the blinded cohort, sensitivity reached 87∙50% (CI 47∙35 to 99∙68%) and specificity was 75∙0% (34∙91 to 96∙81%).InterpretationsThe sensitivity and specificity values achieved using the ALS CCS identified and validated in this study provide an indication that the detection of chromosome conformation signatures is a promising approach to disease diagnosis and can potentially augment current strategies for diagnosing ALS.FundThis research was funded by Oxford BioDynamics and Innovate UK. Work in the Oxford MND Care and Research Centre is supported by grants from the Motor Neurone Disease Association and the Medical Research Council. Additional support was provided by the Northeast ALS Consortium (NEALS).
Human infection with the SARS-CoV-2 virus leads to coronavirus disease (COVID-19). A striking characteristic of COVID-19 infection in humans is the highly variable host response and the diverse clinical outcomes, ranging from clinically asymptomatic to severe immune reactions leading to hospitalization and death. Here we used a 3D genomic approach to analyse blood samples at the time of COVID diagnosis, from a global cohort of 80 COVID-19 patients, with different degrees of clinical disease outcomes. Using 3D whole genome EpiSwitch® arrays to generate over 1 million data points per patient, we identified a distinct and measurable set of differences in genomic organization at immune-related loci that demonstrated prognostic power at baseline to stratify patients with mild forms of illness and those with severe forms that required hospitalization and intensive care unit (ICU) support. Further analysis revealed both well established and new COVID-related dysregulated pathways and loci, including innate and adaptive immunity; ACE2; olfactory, Gβψ, Ca2+ and nitric oxide (NO) signalling; prostaglandin E2 (PGE2), the acute inflammatory cytokine CCL3, and the T-cell derived chemotactic cytokine CCL5. We identified potential therapeutic agents for mitigation of severe disease outcome, with several already being tested independently, including mTOR inhibitors (rapamycin and tacrolimus) and general immunosuppressants (dexamethasone and hydrocortisone). Machine learning algorithms based on established EpiSwitch® methodology further identified a subset of 3D genomic changes that could be used as prognostic molecular biomarker leads for the development of a COVID-19 disease severity test.
Background Current diagnostic blood tests for prostate cancer (PCa) are unreliable for the early stage disease, resulting in numerous unnecessary prostate biopsies in men with benign disease and false reassurance of negative biopsies in men with PCa. Predicting the risk of PCa is pivotal for making an informed decision on treatment options as the 5-year survival rate in the low-risk group is more than 95% and most men would benefit from surveillance rather than active treatment. Three-dimensional genome architecture and chromosome structures undergo early changes during tumourigenesis both in tumour and in circulating cells and can serve as a disease biomarker. Methods In this prospective study we screened whole blood of newly diagnosed, treatment naïve PCa patients (n = 140) and cancer-free controls (n = 96) for the presence of 14,241 chromosomal loops in the loci of 425 genes. Results We have detected specific chromosome conformation changes in the loci of ETS1, MAP3K14, SLC22A3 and CASP2 genes in peripheral blood from PCa patients yielding PCa detection with 80% sensitivity and 80% specificity. Further analysis between PCa risk groups yielded prognostic validation sets consisting of HSD3B2, VEGFC, APAF1, BMP6, ERG, MSR1, MUC1, ACAT1 and DAPK1 genes that achieved 80% sensitivity and 93% specificity stratifying high-risk category 3 vs low risk category 1 and 84% sensitivity and 89% specificity stratifying high risk category 3 vs intermediate risk category 2 disease. Conclusions Our results demonstrate specific chromosome conformations in the blood of PCa patients that allow PCa diagnosis and risk stratification with high sensitivity and specificity.
The integration of genetic and environmental factors that regulate the gene expression patterns associated with exercise adaptation is mediated by epigenetic mechanisms. The organisation of the human genome within three-dimensional space, known as chromosome conformation, has recently been shown as a dynamic epigenetic regulator of gene expression, facilitating the interaction of distal genomic regions due to tight and regulated packaging of chromosomes in the cell nucleus. Technological advances in the study of chromosome conformation mean a new class of biomarker—the chromosome conformation signature (CCS)—can identify chromosomal interactions across several genomic loci as a collective marker of an epigenomic state. Investigative use of CCSs in biological and medical research shows promise in identifying the likelihood that a disease state is present or absent, as well as an ability to prospectively stratify individuals according to their likely response to medical intervention. The association of CCSs with gene expression patterns suggests that there are likely to be CCSs that respond, or regulate the response, to exercise and related stimuli. The present review provides a contextual background to CCS research and a theoretical framework discussing the potential uses of this novel epigenomic biomarker within sport and exercise science and medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.