Over-height trucks are continuously striking low clearance overpasses and tunnels. This has led to significant damage, fatalities, and inconvenience to the public. Smart systems can automatically detect and warn oversize trucks, and have been introduced to provide the trucks with the opportunity to avoid a collision. However, high cost of implementing these systems remains a bottleneck for their wide adoption. This paper evaluates the feasibility of using computer vision to detect over-height trucks. In the proposed method, video streams are collected from a surveillance camera attached on the overpass/tunnel, and processed to measure truck heights. The height is measured using line detection and blob tracking which locate upper and lower points of a truck in pixel coordinates. The pixel coordinates are then translated into 3D world coordinates. Proof-of-concept experiment results signify the high performance of the proposed method and its potential in achieving cost-effective monitoring of over-height trucks in the transportation system. The limitations and considerations of the method for field implementation are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.