Hexavalent chromium (Cr(VI)) in water is a proven carcinogen to different internal and external organs of the living organisms. There are different human activities incorporated to the anthropogenic sources in the environment enriching Cr(VI) of high concentration in the water system above the regulatory level. The physical, chemical and biological properties of chromium favour the dissolution in the water environment. This concerns the environmental researcher to tackle and mitigate. Chemical or biological techniques or a combination of the two have been used to remove Cr(VI) from polluted waters. Biological techniques include integrated bioremediation, such as the primary processes of direct bioreduction and biosorption, and secondary processes of microbial fuel cell, biostimulation, surface modified dry biomass and biochar adsorption, and engineered biofilm and cell free reductase. These techniques are used by a wide range of living organisms including bacteria, fungi, plants, plant leaves, plant nuts and algae. This group of living organisms transform and remove Cr(VI) from water during the cellular metabolisms, extracellular activities, physical and chemical adsorptions on the cell surface, and photosynthesis. Variation of different physical, chemical and environmental parameters affecting the efficiency of the bioremediation process have impacted on the design of bioreactors. There has been a recent development of a microbial fuel cell which use the proximity of Cr(VI) reduction as a cathode half cell for the generation of renewable energy and simulation of its' removal from water.
The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.