The rise of virtual and online education in recent years has led to the development and popularization of many online tools, notably three-dimensional (3D) models and augmented reality (AR), for visualizing various structures in chemical sciences. The majority of the developed tools focus on either small molecules or biological systems, as information regarding their structure can be easily accessed from online databases or obtained through relatively quick calculations. As such, due to a lack of crystallographic and theoretical data available for nonbiological macromolecules, there is a noticeable lack of accessible online tools for the visualization of polymers in 3D. Herein, using a few sample polymers, we showcase a workflow for the generation of 3D models using molecular dynamics and Blender. The 3D structures can then be hosted on p3d.in, where AR models can be generated automatically. Furthermore, the hosted 3D models can then be shared via quick response (QR) codes and used in various settings without the need to download any applications.
The rise of virtual and online education in recent years has led to the development and popularization of many online tools, notably 3D models and augmented reality (AR), for visualizing various structures in chemical sciences. The majority of the developed tools focus on either small molecules or biological systems, as information regarding their structure can be easily accessed from online databases or obtained through relatively quick theoretical calculations. As such, due to a lack of crystallographic and theoretical data available for non-biological macromolecules, there is a noticeable lack of accessible online tools for the visualization of polymers in 3D. Herein, using a few sample polymers, we showcase a workflow for the generation of 3D models using molecular dynamics and Blender. The 3D structures can then be hosted on p3d.in, where AR models can be generated automatically. Furthermore, the hosted 3D models can then be shared via quick response (QR) codes and used in various settings without the need to download any applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.