This paper considers an experimental approach for assessing algorithms used to exploit remotely sensed data. The approach employs synthetic images that are generated using physical models to make them more realistic while still providing ground truth data for quantitative evaluation. This approach complements the common approach of using real data and/or simple model-generated data. To demonstrate the value of such an approach, the behavior of the FastICA algorithm as a hyperspectral unmixing technique is evaluated using such data. This exploration leads to a number of useful insights such as: (1) the need to retain more dimensions than indicated by eigenvalue analysis to obtain near-optimal results; (2) conditions in which orthogonalization of unmixing vectors is detrimental to the exploitation results; and (3) a means for improving FastICA unmixing results by recognizing and compensating for materials that have been split into multiple abundance maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.