With continued improvement in telescope sensitivity and observational techniques, the search for rocky planets in stellar habitable zones is entering an exciting era. With so many exoplanetary systems available for follow-up observations to find potentially habitable planets, one needs to prioritise the ever-growing list of candidates. We aim to determine which of the known planetary systems are dynamically capable of hosting rocky planets in their habitable zones, with the goal of helping to focus future planet search programs. We perform an extensive suite of numerical simulations to identify regions in the habitable zones of single Jovian planet systems where Earth mass planets could maintain stable orbits, specifically focusing on the systems in the Catalog of Earth-like Exoplanet Survey Targets (CELESTA). We find that small, Earth-mass planets can maintain stable orbits in cases where the habitable zone is largely, or partially, unperturbed by a nearby Jovian, and that mutual gravitational interactions and resonant mechanisms are capable of producing stable orbits even in habitable zones that are significantly or completely disrupted by a Jovian. Our results yield a list of 13 single Jovian planet systems in CELESTA that are not only capable of supporting an Earth-mass planet on stable orbits in their habitable zone, but for which we are also able to constrain the orbits of the Earth-mass planet such that the induced radial velocity signals would be detectable with next generation instruments.
We present a detailed analysis of the orbital stability of the HD 181433 planetary system, finding it to exhibit strong dynamical instability across a wide range of orbital eccentricities, semi-major axes, and mutual inclinations. We also analyse the behaviour of an alternative system architecture, proposed by Campanella (2011), and find that it offers greater stability than the original solution, as a result of the planets being trapped in strong mutual resonance.We take advantage of more recent observations to perform a full refit of the system, producing a new planetary solution. The best-fit orbit for HD 181433 d now places the planet at a semi-major axis of 6.60±0.22 au, with an eccentricity of 0.469±0.013. Extensive simulations of this new system architecture reveal it to be dynamically stable across a broad range of potential orbital parameter space, increasing our confidence that the new solution represents the ground truth of the system.Our work highlights the advantage of performing dynamical simulations of candidate planetary systems in concert with the orbital fitting process, as well as supporting the continuing monitoring of radial velocity planet search targets.
While the number of exoplanets discovered continues to increase at a rapid rate, we are still to discover any system that truly resembles the Solar system. Existing and near future surveys will likely continue this trend of rapid discovery. To see if these systems are Solar system analogues, we will need to efficiently allocate resources to carry out intensive follow-up observations. We seek to uncover the properties and trends across systems that indicate how much of the habitable zone is stable in each system to provide focus for planet hunters. We study the dynamics of all known single Jovian planetary systems, to assess the dynamical stability of the habitable zone around their host stars. We perform a suite of simulations of all systems where the Jovian planet will interact gravitationally with the habitable zone, and broadly classify these systems.Besides the system's mass ratio (M pl /M st ar ), and the Jovian planet's semi-major axis (a pl ) and eccentricity (e pl ), we find that there are no underlying system properties which are observable that indicate the potential for planets to survive within the system's habitable zone. We use M pl /M st ar , a pl and e pl to generate a parameter space over which the unstable systems cluster, thus allowing us to predict which systems to exclude from future observational or numerical searches for habitable exoplanets. We also provide a candidate list of 20 systems that have completely stable habitable zones and Jovian planets orbiting beyond the habitable zone as potential first order Solar system analogues.
Over the past three decades, we have witnessed one of the great revolutions in our understanding of the cosmos—the dawn of the Exoplanet Era. Where once we knew of just one planetary system (the solar system), we now know of thousands, with new systems being announced on a weekly basis. Of the thousands of planetary systems we have found to date, however, there is only one that we can study up-close and personal—the solar system. In this review, we describe our current understanding of the solar system for the exoplanetary science community—with a focus on the processes thought to have shaped the system we see today. In section one, we introduce the solar system as a single well studied example of the many planetary systems now observed. In section two, we describe the solar system's small body populations as we know them today—from the two hundred and five known planetary satellites to the various populations of small bodies that serve as a reminder of the system's formation and early evolution. In section three, we consider our current knowledge of the solar system's planets, as physical bodies. In section four we discuss the research that has been carried out into the solar system's formation and evolution, with a focus on the information gleaned as a result of detailed studies of the system's small body populations. In section five, we discuss our current knowledge of planetary systems beyond our own—both in terms of the planets they host, and in terms of the debris that we observe orbiting their host stars. As we learn ever more about the diversity and ubiquity of other planetary systems, our solar system will remain the key touchstone that facilitates our understanding and modeling of those newly found systems, and we finish section five with a discussion of the future surveys that will further expand that knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.