The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C-H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C-H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit.
*Correspondence to: edman.tsang@chem.ox.ac.uk.The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydro-deoxygenation catalysts during the upgrading process. However, traditionally prepared Co-MoS 2 catalysts, although efficient for hydro-desulfurisation, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS 2 monolayer sheets decorated with isolated Co atoms through covalent bonding of Co to sulfur vacancies on the basal planes that, when compared to conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydro-deoxygenation of 4-methylphenol to toluene. The higher activity, allows the reaction temperature to be reduced from the typically used 300 o C to 180 o C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS 2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.
Platinum group metals (PGMs) serve as highly active catalysts in a variety of heterogeneous chemical processes. Unfortunately, their high activity is accompanied by a high affinity for CO and thus, PGMs are susceptible to poisoning. Alloying PGMs with metals exhibiting lower affinity to CO could be an effective strategy toward preventing such poisoning. In this work, we use density functional theory to demonstrate this strategy, focusing on highly dilute alloys of PGMs (Pd, Pt, Rh, Ir and Ni) with poison resistant coinage metal hosts (Cu, Ag, Au), such that individual PGM atoms are dispersed at the atomic limit forming single atom alloys (SAAs). We show that compared to the pure metals, CO exhibits lower binding strength on the majority of SAAs studied, and we use kinetic Monte Carlo simulation to obtain relevant temperature programed desorption spectra, which are found to be in good agreement with experiments. Additionally, we consider the effects of CO adsorption on the structure of SAAs. We calculate segregation energies which are indicative of the stability of dopant atoms in the bulk compared to the surface layer, as well as aggregation energies to determine the stability of isolated surface dopant atoms compared to dimer and trimer configurations. Our calculations reveal that CO adsorption induces dopant atom segregation into the surface layer for all SAAs considered here, whereas aggregation and island formation may be promoted or inhibited depending on alloy constitution and CO coverage. This observation suggests the possibility of controlling ensemble effects in novel catalyst architectures through CO-induced aggregation and kinetic trapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.