Purpose While radiotherapy (RT) for head and neck cancer (HNC) has made recent strides, RT-induced vasculitis continues to adversely affect long-term patient outcomes. Guidelines for managing this complication remain scarce, supporting the need for a sensitive imaging modality in post-treatment evaluations. In this review, we discuss the current literature regarding 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and 18F-sodium fluoride (NaF-PET) in evaluating RT-induced vasculitis in HNC patients, highlighting several arenas of evolving clinical significance: (1) early recognition and standardized evaluation of RT-induced vasculitis, and (2) potential for a multifaceted diagnostic tool to stratify cardiovascular risk in HNC patients. Methods Numerous databases, including, but not limited to, Google Scholar and PubMed, were utilized to compile a body of literature regarding PET imaging of RT-induced vasculitis in HNC and related malignancies. Results Multiple studies have established the clinical capabilities of FDG-PET/computed tomography (FDG-PET/CT) for detection and management of RT-induced vasculitis in HNC patients, while NaF-PET/CT remains under investigation. Inflammatory vascular stages may be best analyzed by FDG-PET/CT, while vascular microcalcification and atherosclerotic disease may be supplementally assessed by the unique properties of NaF-PET/CT. With these modalities detecting primary stages of more detrimental vascular complications, PET imaging may carry several advantages over conventional, structural techniques. Conclusion FDG-PET/CT and NaF-PET/CT hold significant potential as preliminary diagnostic tools in monitoring early inflammation and atherosclerotic plaque development, warranting further research and attention. Applying these techniques in this context may foster proactive and consistent assessments of RT-induced vasculitis in HNC patients, mitigating potential cardiovascular risks through better-informed treatment decisions.
The pathogenesis of Coronavirus Disease 2019 (COVID-19) involves cytokine-driven recruitment and accumulation of inflammatory cells at sites of infection. These activated neutrophils, monocytes, and effector T cells are highly glycolytic and thus appear as [18]F-labeled fluorodeoxyglucose (FDG) avid sites on positron emission tomography (PET) imaging. FDG-PET-computed tomography (FDG-PET/CT) is a highly sensitive modality for the detection, monitoring, and assessing response related to COVID-19 disease activity that holds significant clinical relevance. To date, concerns over cost, access, and undue radiation exposure have limited the use of FDG-PET/CT in COVID-19 to a small number of individuals where PET-based interventions were already indicated. In this review, we summarize the existing literature on the use of FDG-PET in the detection and monitoring of COVID-19 with particular focus on several areas of clinical relevance that warrant future research: (1) incidental early detection of subclinical COVID-19 in patients who have undergone FDG-PET for other underlying diseases, (2) standardized quantitative assessment of COVID-19 disease burden at specific points in time, and (3) analysis of FDG-PET/CT data leading to better characterization of COVID-19 pathogenesis. Employing FDG-PET/CT for these purposes may allow for the earliest detection of COVID-19-associated venous thromboembolism (VTE), standardized monitoring of disease progression and response to treatment, and better characterization of the acute and chronic complications of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.