Although short-term plasticity is believed to play a fundamental role in cortical computation, empirical evidence bearing on its role during behavior is scarce. Here we looked for the signature of short-term plasticity in the fine-timescale spiking relationships of a simultaneously recorded population of physiologically identified pyramidal cells and interneurons, in the medial prefrontal cortex of the rat, in a working memory task. On broader timescales, sequentially organized and transiently active neurons reliably differentiated between different trajectories of the rat in the maze. On finer timescales, putative monosynaptic interactions reflected short-term plasticity in their dynamic and predictable modulation across various aspects of the task, beyond a statistical accounting for the effect of the neurons' co-varying firing rates. Seeking potential mechanisms for such effects, we found evidence for both firing pattern-dependent facilitation and depression, as well as for a supralinear effect of presynaptic coincidence on the firing of postsynaptic targets.
A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components—that is, to use a mixture of finite mixtures (MFM). The most commonly-used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs—an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation—and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes.
Amarasingham A, Harrison MT, Hatsopoulos NG, Geman S. Conditional modeling and the jitter method of spike resampling. J Neurophysiol 107: 517-531, 2012. First published October 26, 2011 doi:10.1152/jn.00633.2011.-The existence and role of fine-temporal structure in the spiking activity of central neurons is the subject of an enduring debate among physiologists. To a large extent, the problem is a statistical one: what inferences can be drawn from neurons monitored in the absence of full control over their presynaptic environments? In principle, properly crafted resampling methods can still produce statistically correct hypothesis tests. We focus on the approach to resampling known as jitter. We review a wide range of jitter techniques, illustrated by both simulation experiments and selected analyses of spike data from motor cortical neurons. We rely on an intuitive and rigorous statistical framework known as conditional modeling to reveal otherwise hidden assumptions and to support precise conclusions. Among other applications, we review statistical tests for exploring any proposed limit on the rate of change of spiking probabilities, exact tests for the significance of repeated fine-temporal patterns of spikes, and the construction of acceptance bands for testing any purported relationship between sensory or motor variables and synchrony or other fine-temporal events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.