Background and Purpose There have been few neuroimaging studies of pediatric cerebral malaria (CM), a common, often fatal tropical condition. We undertook a prospective study of pediatric CM to better characterize the MRI features of this syndrome, comparing findings in children meeting a stringent definition of CM to those in a control group who were infected with malaria but who were likely to have a non-malarial cause of coma. Materials and Methods Consecutive children admitted with traditionally defined CM (parasitemia, coma and no other coma etiology evident) were eligible for this study. The presence or absence of malaria retinopathy was determined. MRI findings in patients with retinopathy-positive (ret+) CM (cases) were compared to those with retinopathy-negative (ret−) CM (controls). Two radiologists blinded to retinopathy status jointly developed a scoring procedure for image interpretation and provided independent reviews. MRI findings were compared between patients with and without retinopathy, to assess the specificity of changes for patients with very strictly defined CM. Results Of 152 children with clinically defined CM, 120 were ret+, and 32 were ret −. Abnormalities were much more common in the ret + cases, and included severe edema, abnormal T2 signal, and DWI abnormalities in the cortical, deep gray and white matter structures. Focal abnormalities rarely respected vascular distributions. Most of the scans in the more clinically heterogeneous ret− group were normal, and none of the abnormalities noted were more prevalent in controls. Conclusions Distinctive MRI findings present in patients meeting a stringent definition of CM may offer insights into disease pathogenesis and treatment.
Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼ 70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.
Tissue engineered scaffolds (TES) hold promise for improving the outcome of cell-based therapeutic strategies for a variety of biomedical scenarios, including musculoskeletal injuries, soft tissue repair, and spinal cord injury. Key to TES research and development, and clinical use, is the ability to longitudinally monitor TES location, orientation, integrity, and microstructure following implantation. Here, we describe a strategy for using microcomputed tomography (microCT) to visualize TES following implantation into mice. TES were doped with highly radiopaque gadolinium oxide nanocrystals and were implanted into the hind limbs of mice. Mice underwent serial microCT over 23 weeks. TES were clearly visible over the entire time course. Alginate scaffolds underwent a 20% volume reduction over the first 6 weeks, stabilizing over the next 17 weeks. Agarose scaffold volumes were unchanged. TES attenuation was also unchanged over the entire time course, indicating a lack of nanocrystal dissolution or leakage. Histology at the implant site showed the presence of very mild inflammation, typical for a mild foreign body reaction. Blood work indicated marked elevation in liver enzymes, and hematology measured significant reduction in white blood cell counts. While extrapolation of the X-ray induced effects on hematopoiesis in these mice to humans is not straightforward, clearly this is an area for careful monitoring. Taken together, these data lend strong support that doping TES with radiopaque nanocrystals and performing microCT imaging, represents a possible strategy for enabling serial in vivo monitoring of TES.
As part of an NIH-funded study of malaria pathogenesis, a magnetic resonance (MR) imaging research facility was established in Blantyre, Malaŵi to enhance the clinical characterization of pediatric patients with cerebral malaria through application of neurological MR methods. The research program requires daily transmission of MR studies to Michigan State University (MSU) for clinical research interpretation and quantitative post-processing. An intercontinental satellite-based network was implemented for transmission of MR image data in Digital Imaging and Communications in Medicine (DICOM) format, research data collection, project communications, and remote systems administration. Satellite Internet service costs limited the bandwidth to symmetrical 384 kbit/s. DICOM routers deployed at both the Malaŵi MRI facility and MSU manage the end-to-end encrypted compressed data transmission. Network performance between DICOM routers was measured while transmitting both mixed clinical MR studies and synthetic studies. Effective network latency averaged 715 ms. Within a mix of clinical MR studies, the average transmission time for a 256 × 256 image was ~2.25 and ~6.25 s for a 512 × 512 image. Using synthetic studies of 1,000 duplicate images, the interquartile range for 256 × 256 images was [2.30, 2.36] s and [5.94, 6.05] s for 512 × 512 images. Transmission of clinical MRI studies between the DICOM routers averaged 9.35 images per minute, representing an effective channel utilization of ~137% of the 384-kbit/s satellite service as computed using uncompressed image file sizes (including the effects of image compression, protocol overhead, channel latency, etc.). Power unreliability was the primary cause of interrupted operations in the first year, including an outage exceeding 10 days.
Pigs are an important translational research model for biomedical imaging studies, and especially for modeling diseases of the liver. Dynamic contrast enhanced (DCE)-MRI is experimentally used to measure liver function in humans, but has never been characterized in pig liver. Here we performed DCE-MRI of pig liver following the delivery of two FDA approved hepato-specific MRI contrast agents, Gd-EOB-DTPA (Eovist) and Gd-BOPTA (Multihance), and the non-hepatospecific agent Magnevist, and optimized the anesthesia and animal handling protocol to acquire robust data. A single pig underwent 5 scanning sessions over six weeks, each time injected at clinical dosing either with Eovist (twice), Multihance (twice) or Magnevist (once). DCE-MRI was performed at 1.5T for 60 minutes. DCE-MRI showed rapid hepatic MRI signal enhancement following IV injection of Eovist or Multihance. Efflux of contrast agent from liver exhibited kinetics similar to that in humans, except for one hyperthermic animal where efflux was very fast. As expected, Magnevist was non-enhancing in the liver. The hepatic signal enhancement from Eovist matched that seen in humans and primates, while the hepatic signal enhancement from Multihance was different, similar to rodents and dogs, likely the result of differential hepatic organic anion transport polypeptides. This first experience with these agents in pigs provides valuable information on contrast agent dynamics in normal pig liver. Given the disparity in contrast agent uptake kinetics with humans for Multihance, Eovist should be used in porcine models for biomedical imaging. Proper animal health maintenance, especially temperature, seems essential for accurate and reproducible results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.