Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotional content of words is consistent between languages under translation, and (iii) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts.language | social psychology | happiness | positivity
We demonstrate that the concerns expressed by Garcia et al. are misplaced, due to (1) a misreading of our findings in [1]; (2) a widespread failure to examine and present words in support of asserted summary quantities based on word usage frequencies; and (3) a range of misconceptions about word usage frequency, word rank, and expert-constructed word lists. In particular, we show that the English component of our study compares well statistically with two related surveys, that no survey design influence is apparent, and that estimates of measurement error do not explain the positivity biases reported in our work and that of others. We further demonstrate that for the frequency dependence of positivity-of which we explored the nuances in great detail in [1]-Garcia et al. did not perform a reanalysis of our data-they instead carried out an analysis of a different, statistically improper data set and introduced a nonlinearity before performing linear regression.Note: The present manuscript is an elaboration of our short reply letter [2].
A major challenge in the field of Modeling & Simulation is providing efficient parallel computation for a variety of algorithms. Algorithms that are described easily and computed efficiently for continuous simulation, may be complex to describe and/or efficiently execute in a discrete event context, and vice-versa. Real-world models often employ multiple algorithms that are optimally defined in one approach or the other. Parallel combined simulation addresses this problem by allowing models to define algorithmic components across multiple paradigms. In this paper, we illustrate the performance of parallel combined simulation, where the continuous component is executed across multiple graphical processing units (GPU) and the discrete event component is executed across multiple central processing units (CPU).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.