We combine state-of-the-art computational crystal structure prediction (CSP) techniques with a wide range of experimental crystallization methods to understand and explore crystal structure in pharmaceuticals and minimize the risk of unanticipated late-appearing polymorphs. Initially, we demonstrate the power of CSP to rationalize the difficulty in obtaining polymorphs of the well-known pharmaceutical isoniazid and show that CSP provides the structure of the recently obtained, but unsolved, Form III of this drug despite there being only a single resolved form for almost 70 years. More dramatically, our blind CSP study predicts a significant risk of polymorphism for the related iproniazid. Employing a wide variety of experimental techniques, including high-pressure experiments, we experimentally obtained the first three known nonsolvated crystal forms of iproniazid, all of which were successfully predicted in the CSP procedure. We demonstrate the power of CSP methods and free energy calculations to rationalize the observed elusiveness of the third form of iproniazid, the success of high-pressure experiments in obtaining it, and the ability of our synergistic computational-experimental approach to “de-risk” solid form landscapes.
This work presents an updated solid-form discovery approach to the polymorphism of the antiarrhythmic drug mexiletine hydrochloride, in which experimental and computational techniques are combined to provide a rigorous characterization of the solid-form landscape of this compound. The resulting solid forms were characterized by powder and singlecrystal X-ray diffraction, IR spectroscopy, differential scanning calorimetry, and 13 C solid-state NMR. This approach reveals five solid-form types of mexiletine hydrochloride. Forms 1, 2, and 3 are mutually enantiotropically related anhydrous polymorphs, with Form 1 the room temperature stable form, Form 2 the hightemperature form, and Form 3 the thermodynamically stable polymorph between 148 and 167 °C. The final two forms termed Types A and B comprise two large families of isomorphous channel solvates, including a fourth nonsolvated form isostructural to the Type A solvates. We report 11 modifications of each solvate, in which a diverse range of solvents are included in the channels, without changing the fundamental structure of the drug framework. These experimental results go hand-in-hand with computational crystal structure prediction (using the AstraZeneca crystal structure prediction approach), which together suggest that it is unlikely further nonsolvated forms, at least with Z′ = 1, will be discovered under ambient conditions.
The factors affecting the self-assembly process in low molecular weight gelators (LMWGs) were investigated by tuning the gelation properties of a well-known gelator N-(4-pyridyl)isonicotinamide (4PINA). The N―H∙∙∙N interactions responsible for gel formation in 4PINA were disrupted by altering the functional groups of 4PINA, which was achieved by modifying pyridyl moieties of the gelator to pyridyl N-oxides. We synthesized two mono-N-oxides (INO and PNO) and a di-N-oxide (diNO) and the gelation studies revealed selective gelation of diNO in water, but the two mono-N-oxides formed crystals. The mechanical strength and thermal stabilities of the gelators were evaluated by rheology and transition temperature (Tgel) experiments, respectively, and the analysis of the gel strength indicated that diNO formed weak gels compared to 4PINA. The SEM image of diNO xerogels showed fibrous microcrystalline networks compared to the efficient fibrous morphology in 4PINA. Single-crystal X-ray analysis of diNO gelator revealed that a hydrogen-bonded dimer interacts with adjacent dimers via C―H∙∙∙O interactions. The non-gelator with similar dimers interacted via C―H∙∙∙N interaction, which indicates the importance of specific non-bonding interactions in the formation of the gel network. The solvated forms of mono-N-oxides support the fact that these compounds prefer crystalline state rather than gelation due to the increased hydrophilic interactions. The reduced gelation ability (minimum gel concentration (MGC)) and thermal strength of diNO may be attributed to the weak intermolecular C―H∙∙∙O interaction compared to the strong and unidirectional N―H∙∙∙N interactions in 4PINA.
A strategic approach to control the polymorphism of two related drugs by introducing a drugmimetic imide functional group into the molecular weight organogelator structure is presented. This was achieved with novel aminoglutethimide-derived bis(urea) organogelators designed to form gels that act as targeted crystallization media for (±)-thalidomide and barbital. The organogelators prevent concomitant crystallization, a serious issue for drug formulation and development. This work demonstrates the potential to control concomitant crystallization with rationally designed supramolecular gelators.
Photo-generated nitric oxide radicals (NO˙) derived from sodium nitroprusside dihydrate (SNP) are employed for the construction of supramolecular hydrogels based on an amino acid derivative precursor, N-fluorenylmethyloxycarbonyl tyrosine phosphate (FYP), which through dephosphorylation produces the gelator, N-fluorenylmethyloxycarbonyl tyrosine (FY). Self-assembly of the amphiphilic gelator yields high-aspect ratio nanofilaments that entangle to form self-supporting, viscoelastic hydrogels. The presence of photolyzed SNP yields periodically twisted nanofilaments with opposite chirality to filaments formed through conventional hydrogelation routes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.