Abstract. The emergence of Boij-Söderberg theory has given rise to new connections between combinatorics and commutative algebra. Herzog, Sharifan, and Varbaro recently showed that every Betti diagram of an ideal with a k-linear minimal resolution arises from that of the Stanley-Reisner ideal of a simplicial complex. In this paper, we extend their result for the special case of 2-linear resolutions using purely combinatorial methods. Specifically, we show bijective correspondences between Betti diagrams of ideals with 2-linear resolutions, threshold graphs, and anti-lecture hall compositions. Moreover, we prove that any Betti diagram of a module with a 2-linear resolution is realized by a direct sum of Stanley-Reisner rings associated to threshold graphs. Our key observation is that these objects are the lattice points in a normal reflexive lattice polytope.
The weighted spanning tree enumerator of a graph G with weighted edges is the sum of the products of edge weights over all the spanning trees in G. In the special case that all of the edge weights equal 1, the weighted spanning tree enumerator counts the number of spanning trees in G. The Weighted Matrix-Tree Theorem asserts that the weighted spanning tree enumerator can be calculated from the determinant of a reduced weighted Laplacian matrix of G. That determinant, however, is not always easy to compute. In this paper, we show how two well-known results from linear algebra, the Matrix Determinant Lemma and the method of Schur complements, can be used to elegantly compute the weighted spanning tree enumerator for several families of graphs.
The Topological Representation Theorem for (oriented) matroids states that every (oriented) matroid arises from the intersection lattice of an arrangement of codimension one homotopy spheres on a homotopy sphere. In this paper, we use a construction of Engström to show that structure-preserving maps between matroids induce topological mappings between their representations; a result previously known only in the oriented case. Specifically, we show that weak maps induce continuous maps and that this process is a functor from the category of matroids with weak maps to the homotopy category of topological spaces. We also give a new and conceptual proof of a result regarding the Whitney numbers of the first kind of a matroid.
A fundamental challenge for behavioral neuroscientists is to accurately quantify (dis)similarities in animal behavior without excluding inherent variability present between individuals. We explored two new applications of curve and shape alignment techniques to address this issue. As a proof-of-concept we applied these methods to compare normal or alarmed behavior in pairs of medaka (Oryzias latipes). The curve alignment method we call Behavioral Distortion Distance (BDD) revealed that alarmed fish display less predictable swimming over time, even if individuals incorporate the same action patterns like immobility, sudden changes in swimming trajectory, or changing their position in the water column. The Conformal Spatiotemporal Distance (CSD) technique on the other hand revealed that, in spite of the unpredictability, alarmed individuals exhibit lower variability in overall swim patterns, possibly accounting for the widely held notion of “stereotypy” in alarm responses. More generally, we propose that these new applications of established computational geometric techniques are useful in combination to represent, compare, and quantify complex behaviors consisting of common action patterns that differ in duration, sequence, or frequency.
Kirchhoff's matrix-tree theorem asserts that the number of spanning trees in a finite graph can be computed from the determinant of any of its reduced Laplacian matrices. In many cases, even for well-studied families of graphs, this can be computationally or algebraically taxing. We show how two well-known results from linear algebra, the matrix determinant lemma and the Schur complement, can be used to count the spanning trees in several significant families of graphs in an elegant manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.