Stress granule condensation (SGC) of translationally arrested mRNAs requires G3BP, and G3BP-mediated SGC is inhibited by serine 149 phosphorylation, regulated by mutually exclusive binding of Caprin1 and USP10, and requires its RGG region for SGC and for interactions with 40S ribosomal subunits.
Exceptional genomic stability is one of the hallmarks of mouse embryonic stem (ES) cells. However, the genes contributing to this stability remain obscure. We previously identified Zscan4 as a specific marker for 2-cell embryo and ES cells. Here we show that Zscan4 is involved in telomere maintenance and long-term-genomic stability in ES cells. Only 5% of ES cells express Zscan4 at a given time, but nearly all ES cells activate Zscan4 at least once within nine passages. The transient Zscan4-positive state is associated with rapid telomere extension by telomere recombination and upregulation of meiosis-specific homologous recombination genes, which encode proteins that are colocalized with ZSCAN4 on telomeres. Furthermore, Zscan4 knockdown shortens telomeres, increases karyotype abnormalities and spontaneous sister chromatid exchange, and slows down cell proliferation until reaching crisis by eight passages. Together, our data reveal a unique mode of genome maintenance in ES cells.
MicroRNAs (miRNAs) suppress gene expression by inhibiting translation, promoting mRNA decay or both. Each miRNA may regulate hundreds of genes to control the cell's response to developmental and other environmental cues. The best way to understand the function of a miRNA is to identify the genes that it regulates. Target gene identification is challenging because miRNAs bind to their target mRNAs by partial complementarity over a short sequence, suppression of an individual target gene is often small, and the rules of targeting are not completely understood. Here we review computational and experimental approaches to the identification of miRNA-regulated genes. The examination of changes in gene expression that occur when miRNA expression is altered and biochemical isolation of miRNA-associated transcripts complement target prediction algorithms. Bioinformatic analysis of over-represented pathways and nodes in protein-DNA interactomes formed from experimental candidate miRNA gene target lists can focus attention on biologically significant target genes.
SUMMARY
To examine transcription factor (TF) network(s), we created mouse ES cell lines, in each of which one of 50 TFs tagged with a FLAG moiety is inserted into a ubiquitously controllable tetracycline-repressible locus. Of the 50 TFs, Cdx2 provoked the most extensive transcriptome perturbation in ES cells, followed by Esx1, Sox9, Tcf3, Klf4, and Gata3. ChIP-Seq revealed that CDX2 binds to promoters of up-regulated target genes. By contrast, genes down-regulated by CDX2 did not show CDX2 binding, but were enriched with binding sites for POU5F1, SOX2, and NANOG. Genes with binding sites for these core TFs were also down-regulated by the induction of at least 15 other TFs, suggesting a common initial step for ES cell differentiation mediated by interference with the binding of core TFs to their target genes. These ES cell lines provide a fundamental resource to study biological networks in ES cells and mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.