Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association (GWA) meta-analysis based in 135,458 cases and 344,901 control, We identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression, and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relations of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine and define the basis of major depression and imply a continuous measure of risk underlies the clinical phenotype.
SummaryBackgroundVarious genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes.MethodsWe meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls.FindingsWe verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort.InterpretationOur results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes.FundingWellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS).
Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9 (HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes.
ObjectiveTo determine which potentially modifiable risk factors, including socioeconomic, lifestyle/dietary, cardiometabolic, and inflammatory factors, are associated with Alzheimer’s disease.DesignMendelian randomisation study using genetic variants associated with the modifiable risk factors as instrumental variables.SettingInternational Genomics of Alzheimer’s Project.Participants17 008 cases of Alzheimer’s disease and 37 154 controls.Main outcome measuresOdds ratio of Alzheimer’s per genetically predicted increase in each modifiable risk factor estimated with Mendelian randomisation analysis.ResultsThis study included analyses of 24 potentially modifiable risk factors. A Bonferroni corrected threshold of P=0.002 was considered to be significant, and P<0.05 was considered suggestive of evidence for a potential association. Genetically predicted educational attainment was significantly associated with Alzheimer’s. The odds ratios were 0.89 (95% confidence interval 0.84 to 0.93; P=2.4×10−6) per year of education completed and 0.74 (0.63 to 0.86; P=8.0×10−5) per unit increase in log odds of having completed college/university. The correlated trait intelligence had a suggestive association with Alzheimer’s (per genetically predicted 1 SD higher intelligence: 0.73, 0.57 to 0.93; P=0.01). There was suggestive evidence for potential associations between genetically predicted higher quantity of smoking (per 10 cigarettes a day: 0.69, 0.49 to 0.99; P=0.04) and 25-hydroxyvitamin D concentrations (per 20% higher levels: 0.92, 0.85 to 0.98; P=0.01) and lower odds of Alzheimer’s and between higher coffee consumption (per one cup a day: 1.26, 1.05 to 1.51; P=0.01) and higher odds of Alzheimer’s. Genetically predicted alcohol consumption, serum folate, serum vitamin B12, homocysteine, cardiometabolic factors, and C reactive protein were not associated with Alzheimer’s disease.ConclusionThese results provide support that higher educational attainment is associated with a reduced risk of Alzheimer’s disease.
Background and Purpose— The contribution of genetics to stroke risk, and whether this differs for different stroke subtypes, remainsuncertain. Genomewide complex trait analysis allows heritability to be assessed from genomewide association study (GWAS) data. Previous candidate gene studies have identified many associations with stoke but whether these are important requires replication in large independent data sets. GWAS data sets provide a powerful resource to perform replication studies. Methods— We applied genomewide complex trait analysis to a GWAS data set of 3752 ischemic strokes and 5972 controls and determined heritability for all ischemic stroke and the most common subtypes: large-vessel disease, small-vessel disease, and cardioembolic stroke. By systematic review we identified previous candidate gene and GWAS associations with stroke and previous GWAS associations with related cardiovascular phenotypes (myocardial infarction, atrial fibrillation, and carotid intima-media thickness). Fifty associations were identified. Results— For all ischemic stroke, heritability was 37.9%. Heritability varied markedly by stroke subtype being 40.3% for large-vessel disease and 32.6% for cardioembolic but lower for small-vessel disease (16.1%). No previously reported candidate gene was significant after rigorous correction for multiple testing. In contrast, 3 loci from related cardiovascular GWAS studies were significant: PHACTR1 in large-vessel disease ( P =2.63e −6 ), PITX2 in cardioembolic stroke ( P =4.78e −8 ), and ZFHX3 in cardioembolic stroke ( P =5.50e −7 ). Conclusions— There is substantial heritability for ischemic stroke, but this varies for different stroke subtypes. Previous candidate gene associations contribute little to this heritability, but GWAS studies in related cardiovascular phenotypes are identifying robust associations. The heritability data, and data from GWAS, suggest detecting additional associations will depend on careful stroke subtyping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.