The use of ultrasonography has become increasingly popular in the everyday management of critically ill patients. It has been demonstrated to be a safe and handy bedside tool that allows rapid hemodynamic assessment and visualization of the thoracic, abdominal and major vessels structures. More recently, M-mode ultrasonography has been used in the assessment of diaphragm kinetics. Ultrasounds provide a simple, non-invasive method of quantifying diaphragmatic movement in a variety of normal and pathological conditions. Ultrasonography can assess the characteristics of diaphragmatic movement such as amplitude, force and velocity of contraction, special patterns of motion and changes in diaphragmatic thickness during inspiration. These sonographic diaphragmatic parameters can provide valuable information in the assessment and follow up of patients with diaphragmatic weakness or paralysis, in terms of patient-ventilator interactions during controlled or assisted modalities of mechanical ventilation, and can potentially help to understand post-operative pulmonary dysfunction or weaning failure from mechanical ventilation. This article reviews the technique and the clinical applications of ultrasonography in the evaluation of diaphragmatic function in ICU patients.
Patients with withdrawal syndrome had significantly elevated hemodynamic, metabolic and respiratory demands. Clonidine significantly decreased these demands, induced mild sedation and facilitated patient cooperation with the ventilator, enabling ventilator weaning.
1) Continuous haemofiltration does not cause significant alternations in haemodynamic variables. 2) Hypothermia frequently occurs in patients undergoing continuous haemofiltration with high ultrafiltration rates. These hypothermic patients show a reduction in VO2 leading to an increase in PvO2 and PaO2. This mild hypothermia in these circumstances has no evident deleterious effects.
Rationale:
Tissue Doppler imaging (TDI) is an echocardiographic method that measures the velocity of moving tissue.
Objectives:
We applied this technique to the diaphragm to assess the velocity of diaphragmatic muscle motion during contraction and relaxation.
Methods:
In 20 healthy volunteers, diaphragmatic TDI was performed to assess the pattern of diaphragmatic motion velocity, measure its normal values, and determine the intra- and interobserver variability of measurements. In 116 consecutive ICU patients, diaphragmatic excursion, thickening, and TDI parameters of peak contraction velocity, peak relaxation velocity, velocity–time integral, and TDI-derived maximal relaxation rate were assessed during weaning. In a subgroup of 18 patients, transdiaphragmatic pressure (Pdi)-derived parameters (peak Pdi, pressure–time product, and diaphragmatic maximal relaxation rate) were recorded simultaneously with TDI.
Measurements and Main Results:
In terms of reproducibility, the intercorrelation coefficients were >0.89 for all TDI parameters (
P
< 0.001). Healthy volunteers and weaning success patients exhibited lower values for all TDI parameters compared with weaning failure patients, except for velocity–time integral, as follows: peak contraction velocity, 1.35 ± 0.34 versus 1.50 ± 0.59 versus 2.66 ± 2.14 cm/s (
P
< 0.001); peak relaxation velocity, 1.19 ± 0.39 versus 1.53 ± 0.73 versus 3.36 ± 2.40 cm/s (
P
< 0.001); and TDI-maximal relaxation rate, 3.64 ± 2.02 versus 10.25 ± 5.88 versus 29.47 ± 23.95 cm/s
2
(
P
< 0.001), respectively. Peak contraction velocity was strongly correlated with peak transdiaphragmatic pressure and pressure–time product, whereas Pdi-maximal relaxation rate was significantly correlated with TDI-maximal relaxation rate.
Conclusions:
Diaphragmatic tissue Doppler allows real-time assessment of the diaphragmatic tissue motion velocity. Diaphragmatic TDI-derived parameters differentiate patients who fail a weaning trial from those who succeed and correlate well with Pdi-derived parameters.
Inspiratory resistive loading induced significant changes in diaphragmatic contraction pattern, which mainly consisted of decreased velocity of diaphragmatic displacement with no change in diaphragmatic excursion. Tidal volume, increased significantly; the increase in tidal volume, along with the unchanged diaphragmatic excursion, provides sonographic evidence of increased recruitment of extradiaphragmatic muscles under inspiratory resistive loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.