If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
Topobathymetric lidar is becoming an increasingly valuable tool for benthic habitat mapping, enabling safe, efficient data acquisition over coral reefs and other fragile ecosystems. In 2014, a novel topobathymetric lidar system, the Experimental Advanced Airborne Research Lidar-B (EAARL-B), was used to acquire data in priority habitat areas in the U.S. Virgin Islands (USVI), spanning the 0–44-m depth range. In this study, new algorithms and procedures were developed for generating seafloor relative reflectance, along with a suite of shape-based waveform features from EAARL-B. Waveform features were then correlated with percent cover of coral morphologies, domed and branched, and total cover of hard and soft corals. Results show that the EAARL-B can be used to produce useful seafloor relative reflectance mosaics and also that the additional waveform shape-based features contain additional information that may benefit habitat classification—specifically, to aid in distinguishing among hard corals and their coral morphologies, domed and branched. Knowing the spatial extent of changes in coral communities is important to the understanding of resiliency of coral reefs under stress from human impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.