Recent reports have suggested the late actinides participate in more covalent interactions than the earlier actinides, yet the origin of this shift in chemistry is not understood. This report considers the chemistry of actinide dipicolinate complexes to identify why covalent interactions become more prominent for heavy actinides. A modest increase in measured actinide:dipicolinate stability constants is coincident with a significant increase in An 5f energy degeneracy with the dipicolinate molecular orbitals for Bk and Cf relative to Am and Cm. While the interactions in the actinide-dipicolinate complex are largely ionic, the decrease in 5f orbital energy across the series manifests in orbital-mixing and, hence, covalency driven by energy degeneracy. This observation suggests the origin of covalency in heavy actinide interactions stems from the degeneracy of 5f orbitals with ligand molecular orbitals rather than spatial orbital overlap. These findings suggest that the limiting radial extension of the 5f orbitals later in the actinide series could make the heavy actinides ideal elements to probe and tune effects of energy degeneracy driven covalency.
Berkelium is positioned at a crucial location in the actinide series between the inherently stable half-filled 5f(7) configuration of curium and the abrupt transition in chemical behavior created by the onset of a metastable divalent state that starts at californium. However, the mere 320-day half-life of berkelium's only available isotope, (249)Bk, has hindered in-depth studies of the element's coordination chemistry. Herein, we report the synthesis and detailed solid-state and solution-phase characterization of a berkelium coordination complex, Bk(III)tris(dipicolinate), as well as a chemically distinct Bk(III) borate material for comparison. We demonstrate that berkelium's complexation is analogous to that of californium. However, from a range of spectroscopic techniques and quantum mechanical calculations, it is clear that spin-orbit coupling contributes significantly to berkelium's multiconfigurational ground state.
Literature casts einsteinium as a departure from earlier transplutonium actinides, with a decrease in stability constants with aminopolycarboxylate ligands. This report studies transplutonium chemistry - including Am, Bk, Cf, and Es - with aminopolycarboxylate ligands. Es complexation follows similar thermodynamic and structural trends established by the earlier actinides, consistent with first-principle calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.