RX J1856.5−3754 is one of the brightest nearby isolated neutron stars, and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5−3754, within the uncertainties. In our simplest model, the best-fit parameters are an interstellar column density N H ≈ 1 × 10 20 cm −2 and an emitting area with R ∞ ≈ 17 km (assuming a distance to RX J1856.5−3754 of 140 pc), temperature T ∞ ≈ 4.3 × 10 5 K, gravitational redshift z g ∼ 0.22, atmospheric hydrogen column y H ≈ 1 g cm −2 , and magnetic field B ≈ (3 − 4) × 10 12 G; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the neutron star surface as well as general relativistic effects, to determine pulsations; we find there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5−3754.
Balmer-dominated shocks in supernova remnants (SNRs) produce strong hydrogen lines with a two-component profile composed of a narrow contribution from cold upstream hydrogen atoms and a broad contribution from hydrogen atoms that have undergone charge transfer reactions with hot protons. Observations of emission lines from edgewise shocks in SNRs can constrain the gas velocity and collisionless electron heating at the shock front. Downstream hydrogen atoms engage in charge transfer, excitation, and ionization reactions, defining an interaction region called the shock transition zone. The properties of hot hydrogen atoms produced by charge transfers (called broad neutrals) are critical for accurately calculating the structure and radiation from the shock transition zone. This paper is the third in a series describing the kinetic, fluid, and emission properties of Balmer-dominated shocks, and it is the first to properly treat the effect of broad neutral kinetics on the shock transition zone structure. We use our models to extract shock parameters from observations of Balmer-dominated SNRs. We find that the inferred shock velocities and electron temperatures are lower than those of previous calculations by <10% for v s < 1500 km s À1 and by 10%Y30% for v s > 1500 km s À1 . This effect is primarily due to the fact that excitation by proton collisions and charge transfer to excited levels favor the high-speed part of the neutral hydrogen velocity distribution. Our results have a strong dependence on the ratio of the electron to proton temperatures, T e /T p , which allows us to construct a relation (v s ) between the temperature ratio and the shock velocity. We compare our calculations to previous results by Ghavamian and coworkers.
Observations of surface emission from isolated neutron stars (NSs) provide unique challenges to theoretical modelling of radiative transfer in magnetized NS atmospheres. Recent work has demonstrated the critical role of vacuum polarization effects in determining NS spectra and polarization signals, in particular the conversion of photon modes (due to the ‘vacuum resonance’ between plasma and vacuum polarization) propagating in the density gradient of the NS atmosphere. Previous NS atmosphere models incorporated the mode conversion effect approximately, relying on transfer equations for the photon modes. Such treatments are inadequate near the vacuum resonance, particularly for magnetic field strengths around B∼Bl≃ 7 × 1013 G, where the vacuum resonance occurs near the photosphere. In this paper, we provide an accurate treatment of the mode conversion effect in magnetized NS atmosphere models, employing both the modal radiative transfer equations coupled with an accurate mode conversion probability at the vacuum resonance, and the full evolution equations for the photon Stokes parameters. In doing so, we are able to quantitatively calculate the effects of vacuum polarization on atmosphere structure, emission spectra and beam patterns, and polarizations for the entire range of magnetic field strengths, B= 1012–1015 G. In agreement with previous works, we find that for NSs with magnetic field strength B≳ 2 Bl, vacuum polarization reduces the widths of spectral features, and softens the hard spectral tail typical of magnetized atmosphere models. For B≲Bl/2, vacuum polarization does not change the emission spectra, but can significantly affect the polarization signals. Our new, accurate treatment of vacuum polarization is particularly important for quantitative modelling of NS atmospheres with ‘intermediate’ magnetic fields, B≃ (0.5–2) Bl. We provide fitting formulae for the temperature profiles for a suite of NS atmosphere models with different field strengths, effective temperatures and chemical compositions (ionized H or He). These analytical profiles are useful for direct modelling of various observed properties of NS surface emission. As an example, we calculate the observed intensity and polarization light curves from a rotating NS hotspot, taking into account the evolution of photon polarization in the magnetosphere. We show that vacuum polarization induces a unique energy‐dependent linear polarization signature, and that circular polarization can be generated in the magnetosphere of rapidly rotating NSs. We discuss the implications of our results to recent observations of thermally emitting isolated NSs and magnetars, as well as the prospects of future spectral and polarization observations.
Recent observations show that the thermal X-ray spectra of many isolated neutron stars are featureless and in some cases (e.g., RX J1856.5À3754) well fit by a blackbody. Such a perfect blackbody spectrum is puzzling since radiative transport through typical neutron star atmospheres causes noticeable deviation from blackbody. Previous studies have shown that in a strong magnetic field, the outermost layer of the neutron star may be in a condensed solid or liquid form because of the greatly enhanced cohesive energy of the condensed matter. The critical temperature of condensation increases with the magnetic field strength and can be as high as 10 6 K (for Fe surface at B $ 10 13 G or H surface at B $ a few ; 10 14 G). Thus the thermal radiation can directly emerge from the degenerate metallic condensed surface without going through a gaseous atmosphere. Here we calculate the emission properties (spectrum and polarization) of the condensed Fe and H surfaces of magnetic neutron stars in the regimes in which such condensation may be possible. For a smooth condensed surface, the overall emission is reduced from the blackbody by less than a factor of 2. The spectrum exhibits modest deviation from blackbody across a wide energy range and shows mild absorption features associated with the ion cyclotron frequency and the electron plasma frequency in the condensed matter. The roughness of the solid condensate (in the Fe case) tends to decrease the reflectivity of the surface and make the emission spectrum even closer to blackbody. We discuss the implications of our results for observations of dim, isolated neutron stars and magnetars.
Context. Simple models fail to describe the observed spectra of X-ray-dim isolated neutron stars (XDINSs). Interpretating these spectra requires detailed studies of radiative properties in the outermost layers of neutron stars with strong magnetic fields. Previous studies have shown that the strongly magnetized plasma in the outer envelopes of a neutron star may exhibit a phase transition to a condensed form. In this case thermal radiation can emerge directly from the metallic surface without going through a gaseous atmosphere, or alternatively, it may pass through a "thin" atmosphere above the surface. The multitude of theoretical possibilities complicates modeling the spectra and makes it desirable to have analytic formulae for constructing samples of models without going through computationally expensive, detailed calculations. Aims. The goal of this work is to develop a simple analytic description of the emission properties (spectrum and polarization) of the condensed, strongly magnetized surface of neutron stars. Methods. We have improved our earlier work for calculating the spectral properties of condensed magnetized surfaces. Using the improved method, we calculated the reflectivity of an iron surface at magnetic field strengths B ∼ 10 12 G-10 14 G, with various inclinations of the magnetic field lines and radiation beam with respect to the surface and each other. We constructed analytic expressions for the emissivity of this surface as functions of the photon energy, magnetic field strength, and the three angles that determine the geometry of the local problem. Using these expressions, we calculated X-ray spectra for neutron stars with condensed iron surfaces covered by thin partially ionized hydrogen atmospheres. Results. We develop simple analytic descriptions of the intensity and polarization of radiation emitted or reflected by condensed iron surfaces of neutron stars with the strong magnetic fields typical of isolated neutron stars. This description provides boundary conditions at the bottom of a thin atmosphere, which are more accurate than previously used approximations. The spectra calculated with this improvement show different absorption features from those in simplified models. Conclusions. The approach developed in this paper yields results that can facilitate modeling and interpretation of the X-ray spectra of isolated, strongly magnetized, thermally emitting neutron stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.