Running speed is limited by a mechanical interaction between the stance and swing phases of the stride. Here, we tested whether stance phase limitations are imposed by ground force maximums or foot-ground contact time minimums. We selected one-legged hopping and backward running as experimental contrasts to forward running and had seven athletic subjects complete progressive discontinuous treadmill tests to failure to determine their top speeds in each of the three gaits. Vertical ground reaction forces [in body weights (W(b))] and periods of ground force application (T(c); s) were measured using a custom, high-speed force treadmill. At top speed, we found that both the stance-averaged (F(avg)) and peak (F(peak)) vertical forces applied to the treadmill surface during one-legged hopping exceeded those applied during forward running by more than one-half of the body's weight (F(avg) = 2.71 +/- 0.15 vs. 2.08 +/- 0.07 W(b); F(peak) = 4.20 +/- 0.24 vs. 3.62 +/- 0.24 W(b); means +/- SE) and that hopping periods of force application were significantly longer (T(c) = 0.160 +/- 0.006 vs. 0.108 +/- 0.004 s). Next, we found that the periods of ground force application at top backward and forward running speeds were nearly identical, agreeing to within an average of 0.006 s (T(c) = 0.116 +/- 0.004 vs. 0.110 +/- 0.005 s). We conclude that the stance phase limit to running speed is imposed not by the maximum forces that the limbs can apply to the ground but rather by the minimum time needed to apply the large, mass-specific forces necessary.
The recent competitive successes of a bilateral, transtibial amputee sprint runner who races with modern running prostheses has triggered an international controversy regarding the relative function provided by his artificial limbs. Here, we conducted three tests of functional similarity between this amputee sprinter and competitive male runners with intact limbs: the metabolic cost of running, sprinting endurance, and running mechanics. Metabolic and mechanical data, respectively, were acquired via indirect calorimetry and ground reaction force measurements during constant-speed, level treadmill running. First, we found that the mean gross metabolic cost of transport of our amputee sprint subject (174.9 ml O(2)*kg(-1)*km(-1); speeds: 2.5-4.1 m/s) was only 3.8% lower than mean values for intact-limb elite distance runners and 6.7% lower than for subelite distance runners but 17% lower than for intact-limb 400-m specialists [210.6 (SD 13.2) ml O(2)*kg(-1)*km(-1)]. Second, the speeds that our amputee sprinter maintained for six all-out, constant-speed trials to failure (speeds: 6.6-10.8 m/s; durations: 2-90 s) were within 2.2 (SD 0.6)% of those predicted for intact-limb sprinters. Third, at sprinting speeds of 8.0, 9.0, and 10.0 m/s, our amputee subject had longer foot-ground contact times [+14.7 (SD 4.2)%], shorter aerial [-26.4 (SD 9.9)%] and swing times [-15.2 (SD 6.9)%], and lower stance-averaged vertical forces [-19.3 (SD 3.1)%] than intact-limb sprinters [top speeds = 10.8 vs. 10.8 (SD 0.6) m/s]. We conclude that running on modern, lower-limb sprinting prostheses appears to be physiologically similar but mechanically different from running with intact limbs.
We hypothesized that all-out running speeds for efforts lasting from a few seconds to several minutes could be accurately predicted from two measurements: the maximum respective speeds supported by the anaerobic and aerobic powers of the runner. To evaluate our hypothesis, we recruited seven competitive runners of different event specialties and tested them during treadmill and overground running on level surfaces. The maximum speed supported by anaerobic power was determined from the fastest speed that subjects could attain for a burst of eight steps (approximately 3 s or less). The maximum speed supported by aerobic power, or the velocity at maximal oxygen uptake, was determined from a progressive, discontinuous treadmill test to failure. All-out running speeds for trials of 3-240 s were measured during 10-13 constant-speed treadmill runs to failure and 4 track runs at specified distances. Measured values of the maximum speeds supported by anaerobic and aerobic power, in conjunction with an exponential constant, allowed us to predict the speeds of all-out treadmill trials to within an average of 2.5% (R2 = 0.94; n = 84) and track trials to within 3.4% (R2 = 0.86; n = 28). An algorithm using this exponent and only two of the all-out treadmill runs to predict the remaining treadmill trials was nearly as accurate (average = 3.7%; R2 = 0.93; n = 77). We conclude that our technique 1) provides accurate predictions of high-speed running performance in trained runners and 2) offers a performance assessment alternative to existing tests of anaerobic power and capacity.
While useful in describing the efficiency of maneuvering flight, steady-state (i.e., fixed wing) models of maneuvering performance cannot provide insight to the efficacy of maneuvering, particularly during low-speed flapping flight. Contrasted with airplane-analogous gliding/high speed maneuvering, the aerodynamic and biomechanical mechanisms employed by birds at low flight speeds are violent, with rapidly alternating forces routinely being developed. The saltatory nature of this type of flight results in extreme linear and angular displacements of the bird's body; however, birds isolate their heads from these accelerations with cervical reflexes. Experiments with pigeons suggest this ability to isolate the visual and vestibular systems is critical to controlled flapping flight: birds wearing collars that prohibited the neck from isolating the head from the angular accelerations of induced rolls frequently exhibited (50% of flights) a loss of vestibular and/or visual horizon and were unable to maintain controlled flight.
We tested the importance of aerobic metabolism to human running speed directly by altering inspired oxygen concentrations and comparing the maximal speeds attained at different rates of oxygen uptake. Under both normoxic (20.93% O2) and hypoxic (13.00% O2) conditions, four fit adult men completed 15 all-out sprints lasting from 15 to 180 s as well as progressive, discontinuous treadmill tests to determine maximal oxygen uptake and the metabolic cost of steady-state running. Maximal aerobic power was lower by 30% (1.00 +/- 0.15 vs. 0.77 +/- 0.12 ml O2. kg-1. s-1) and sprinting rates of oxygen uptake by 12-25% under hypoxic vs. normoxic conditions while the metabolic cost of submaximal running was the same. Despite reductions in the aerobic energy available for sprinting under hypoxic conditions, our subjects were able to run just as fast for sprints of up to 60 s and nearly as fast for sprints of up to 120 s. This was possible because rates of anaerobic energy release, estimated from oxygen deficits, increased by as much as 18%, and thus compensated for the reductions in aerobic power. We conclude that maximal metabolic power outputs during sprinting are not limited by rates of anaerobic metabolism and that human speed is largely independent of aerobic power during all-out runs of 60 s or less.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.