Morphologists have historically had to rely on destructive procedures to visualize the three‐dimensional (3‐D) anatomy of animals. More recently, however, non‐destructive techniques have come to the forefront. These include X‐ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard‐tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT‐based research is the use of chemical agents to render visible, and differentiate between, soft‐tissue structures in X‐ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine‐based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine‐based, contrast‐enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting‐edge applications of diffusible iodine‐based contrast‐enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward.
Abstract-We performed a battery of analyses on 17 samples of the Almahata Sitta meteorite, identifying three main lithologies and several minor ones present as clasts. The main lithologies are (1) a pyroxene-dominated, very porous, highly reduced lithology, (2) a pyroxene-dominated compact lithology, and (3) an olivine-dominated compact lithology. Although it seems possible that all three lithologies grade smoothly into each other at the kg-scale, at the g-scale this is not apparent. The meteorite is a polymict ureilite, with some intriguing features including exceptionally variable porosity and pyroxene composition. Although augite is locally present in Almahata Sitta, it is a minor phase in most (but not all) samples we have observed. Low-calcium pyroxene (<5 mole% wollastonite) is more abundant than compositionally defined pigeonite; however, we found that even the low-Ca pyroxene in Almahata Sitta has the monoclinic pigeonite crystal structure, and thus is properly termed pigeonite. As the major pyroxene in Almahata Sitta is pigeonite, and the abundance of pigeonite is generally greater than that of olivine, this meteorite might be called a pigeonite-olivine ureilite, rather than the conventional olivine-pigeonite ureilite group. The wide variability of lithologies in Almahata Sitta reveals a complex history, including asteroidal igneous crystallization, impact disruption, reheating and partial vaporization, high-temperature reduction and carbon burning, and re-agglomeration.
Functional analyses of human and nonhuman anthropoid primate femoral neck structure have largely ignored the trabecular bone. We tested hypotheses regarding differences in the relative distribution and structural anisotropy of trabecular bone in the femoral neck of quadrupedal and climbing/suspensory anthropoids. We used high-resolution X-ray computed tomography to analyze quantitatively the femoral neck trabecular structure of Ateles geoffroyi, Symphalangus syndactylus, Alouatta seniculus, Colobus guereza, Macaca fascicularis, and Papio cynocephalus (n ¼ 46). We analyzed a size-scaled superior and inferior volume of interest (VOI) in the femoral neck. The ratio of the superior to inferior VOI bone volume fraction indicated that the distribution of trabecular bone was inferiorly skewed in most (but not all) quadrupeds and evenly distributed the climbing/suspensory species, but interspecific comparisons indicated that all taxa overlapped in these measurements. Degree of anisotropy values were generally higher in the inferior VOI of all species and the results for the two climbing/suspensory taxa, A. geoffroyi (1.71 6 0.30) and S. syndactylus (1.55 6 0.04), were similar to the results for the quadrupedal anthropoids, C. guereza (male ¼ 1.64 6 0.13; female ¼ 1.68 6 0.07) and P. cynocephalus (1.47 6 0.13). These results suggest strong trabecular architecture similarity across body sizes, anthropoid phylogenetic backgrounds, and locomotor mode. This structural similarity might be explained by greater similarity in anthropoid hip joint loading mechanics than previously considered. It is likely that our current models of anthropoid hip joint mechanics are overly simplistic. Anat Rec, 290:422-436, 2007. 2007 Wiley-Liss, Inc.Key words: locomotion; hip joint; cancellous bone; bone volume fraction; degree of anisotropy; microcomputed tomographyDebate exists over the functional significance of cortical bone structure (and distribution) in the human and nonhuman anthropoid femoral neck (Lovejoy, 1988;
Background: Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony) to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.