There is variability in the geometry of the ore outline, particularly between the footwall (FW) and hanging wall (HW), across the strike length of the various orebodies at Copper Cliff Mine. This geometry creates a requirement to plan transverse sills on one side of the orebody and longitudinal sills on the other side of the orebody on certain levels. In fact, there have been instances where some stopes have been mined using two sills (either transverse or longitudinal) on the top cut. With Vale's Vertical Retreat Mining Method (VRM), the drilling must be done from both of the top sills using an in-the-hole (ITH) drill. Once the crown part of the stope has been blasted, an undercut pillar or hanging pillar, i.e. a pillar without any support beneath it, is created. Without any additional reinforcement installed into the hanging pillar, there is a high probability that the hanging pillar itself will fail simply by falling into the open stope as a result of the lack of confinement. The sudden failure of a hanging pillar can lead to additional instability as a result of the excessive span across the open stope. The failed material can also lead to operational issues such as a choked drawpoint; in this case, large pieces of ore inhibit mucking in the bottom sill, thus making it difficult to recover all the ore from the stope. Cable bolts have been proven to be one of the most effective reinforcing ground support elements for different applications in underground hard rock mining. Specifically at Copper Cliff Mine, cable bolts are used to pre-support the pillars between the top sills, prior to crown blasting and prior to creating the hanging pillar geometry. Later in the mining cycle, the hanging pillars are further supported by backfill; the fill is placed tight underneath the hanging pillars for long-term, regional support. To date, 10 stopes have been successfully mined in various orebodies at Copper Cliff Mine using cable bolts to support hanging pillars during mining. This paper describes case studies where pillars were undercut, and includes an outline of the methods that were used to mitigate the risks of ground failure. A discussion of the cable bolt design methodology for hanging pillar geometries, and a summary of the benefits achieved in terms of safety, stability and additional ore recovery as also included.
State of the art CubeSats such as ExoplanetSat require pointing precision for the science payload on the order of arcseconds. ExoplanetSat uses dual stage control to achieve the pointing requirement. Reaction wheels provide coarse satellite attitude control while a high bandwidth piezoelectric stage performs fine optical stabilization. This paper discusses the development of ExoplanetSat's prototype optical system which serves dual roles as the payload and attitude determination sensor. A new fast star centroiding algorithm is developed based on centroid window tracking. The tracking algorithm utilizes centroid data from previous image frames to estimate the spacecraft slew rate which provides a prediction of the current centroid locations. An image window is centered at each predicted star location. A center of mass calculation is performed on the image window to determine the centroid location. This proposed algorithm is shown to reduce the computation time by a factor of 10 with a novel air bearing hardware testbed. This paper also develops a high fidelity optical imager model in MATLAB ® Simulink®. The air bearing testbed data provides confidence in the model results so that it can be used to complete future hardware trade studies.Downloaded by PURDUE UNIVERSITY on July 30, 2015 | http://arc.aiaa.org |
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.