The use of a fiber-coupled terahertz (THz) transmitter/receiver pair for spectroscopic detection of water vapor is investigated. Transmission signals of an alumina cylinder demonstrate that the measurement approach can be applied in a windowless ceramic combustor. First, a conventional commercial transmitter/receiver pair is used to make measurements for frequencies to 1.25 THz. Water-vapor absorption is clearly evident within the alumina transparency window and is readily modeled using existing databases. A variety of data-acquisition schemes is possible using THz instrumentation. To assess signal-collection techniques, a prototype THz transmitter/receiver pair is then used with the asynchronous optical-sampling (ASOPS) technique to obtain asynchronous THz-sampling signals to 1 THz without the need for an optomechanical delay line. Two mode-locked Ti:sapphire lasers operating at slightly different repetition rates are used for pumping the transmitter and receiver independently to permit a complete time-domain THz signal to be recorded. The resulting repetitive phase walkout is demonstrated by collecting power spectra of room air that exhibit water-vapor absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.