The advent of ridehailing services such as Uber and Lyft has expanded for-hire vehicle travel. We use data from the 2017 National Household Travel Survey (NHTS) to investigate the extent of this expansion in the United States. We report changes in the for-hire vehicle market since ridehailing services became available and statistically estimate the determinants of ridehailing use. From 2009-2017, the for-hire vehicle market share doubled. While for-hire vehicles still only account for 0.5% of all trips, the percent of all Americans who use ridehailing in any given month is nearly 10%. Within the for-hire vehicle market, this trend of growth has not been uniformly distributed across demographic groups or geographies; it has been greater in mid-sized and large cities, and among younger individuals and wealthier households. This suggests that understanding the equity implications of ridehailing is an important avenue for research. Multivariate analysis provides evidence that both transit and nonmotorized transport use are correlated with ridehailing use, that ridehailing has a negative relationship with vehicle ownership, and that residents of denser areas have higher ridehailing use. Given the rapid growth of ridehailing, it has become important for cities to include for-hire vehicles in their planning going forward. These NHTS data provide a starting point, but more detailed and frequent data collection is needed to fully understand this many-faceted, rapidly-changing market.
Routing is a key step in transport planning and research. Nonetheless, researchers and practitioners often face challenges when performing this task due to long computation times and the cost of licensed software. R5 is a multimodal transport network router that offers multiple routing features, such as calculating travel times over a time window and returning multiple itineraries for origin/destination pairs. This paper describes r5r, an open-source R package that leverages R5 to efficiently compute travel time matrices and generate detailed itineraries between sets of origins and destinations at no expense using seamless parallel computing.
Human behavior is notoriously difficult to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring about long-term behavioral changes. During the pandemic, people have been forced to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. A critical question going forward is how these experiences have actually changed preferences and habits in ways that might persist after the pandemic ends. Many observers have suggested theories about what the future will bring, but concrete evidence has been lacking. We present evidence on how much US adults expect their own postpandemic choices to differ from their prepandemic lifestyles in the areas of telecommuting, restaurant patronage, air travel, online shopping, transit use, car commuting, uptake of walking and biking, and home location. The analysis is based on a nationally representative survey dataset collected between July and October 2020. Key findings include that the “new normal” will feature a doubling of telecommuting, reduced air travel, and improved quality of life for some.
Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a critical question is whether these experiences will result in changed behaviors and preferences in the long term. This paper presents initial findings on the likelihood of long-term changes in telework, daily travel, restaurant patronage, and air travel based on survey data collected from adults in the United States in Spring 2020. These data suggest that a sizable fraction of the increase in telework and decreases in both business air travel and restaurant patronage are likely here to stay. As for daily travel modes, public transit may not fully recover its pre-pandemic ridership levels, but many of our respondents are planning to bike and walk more than they used to. These data reflect the responses of a sample that is higher income and more highly educated than the US population. The response of these particular groups to the COVID-19 pandemic is perhaps especially important to understand, however, because their consumption patterns give them a large influence on many sectors of the economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.