We have used site-directed mutagenesis and molecular modeling to investigate the inactivation of an invertebrate acetylcholinesterase (AChE), ChE2 from amphioxus, by the sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM), creating various mutants, including C310A and C466A, and the double mutants C310A/C466A and C310A/F312I, to assess the relative roles of the two cysteines and a proposal that the increased rate of inactivation in the F312I mutant is due to increased access to Cys310. Our results suggest that both cysteines may be involved in inactivation by sulfhydryl reagents, but that the cysteine in the vicinity of the acyl pocket is more accessible. We speculate that the inactivation of aphid AChEs by sulfhydryl reagents is due to the presence of a cysteine homologous to Cys310. We also investigated the effects of various reversible cholinergic ligands, which bind to different subsites of the active site of the enzyme, on the rate of inactivation by DTNB of wild type ChE2 and ChE2 F312I. For the most part the inhibitors protect the enzymes from inactivation by DTNB. However, a notable exception is the peripheral site ligand propidium, which accelerates inactivation in the wild type ChE2, but retards inactivation in the F312I mutant. We propose that these opposing effects are the result of an altered allosteric signal transduction mechanism in the F312I mutant compared to the wild type ChE2.
Previously we used site-directed mutagenesis, in vitro expression, and molecular modeling to investigate the inactivation of an invertebrate acetylcholinesterase, cholinesterase 2 from amphioxus, by the sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). We created the mutants C310A, C466A, C310A/C466A and C310A/F312I to assess the roles of the two cysteines and a proposal that the increased rate of inactivation previously found in an F312I mutant was due to increased access of sulfhydryl reagents to Cys310. Our results indicated that both of the cysteines could be involved in inactivation by sulfhydryl reagents, but that the cysteine near the acyl pocket was more accessible. We speculated that the inactivation of aphid AChEs by sulfhydryl reagents was due to the presence of a cysteine homologous to Cys310 and proposed that this residue could be a target for a specific insecticide. Here we reconsider this proposal.
We have studied the thermal inactivation at 37°C of wild type and mutant ChE2 (C310A, F312I, C466A, C310A/F312I, and C310A/C466A) from amphioxus (Branchiostoma floridae) expressed in vitro in COS-7 monkey cells under three sets of conditions: 30°C for 48 h, 30°for 24 h and C37°Cfor 24 h, and 37°C for 48 h. We found biphasic denaturation curves for all enzymes and conditions, except wild type and C310A ChE2 expressed at 30°C for 48 h. Generally, single mutants are more unstable than wild type, and the double mutants are even more unstable. We propose a model involving stable and unstable conformations of the enzymes to explain these results, and we discuss the implications of the model. We also found a correlation between the melting temperature of the ChEs and the rates at which they denature at 37°C, with the denaturation of the unstable conformation dominating the relationship. Reversible cholinergic inhibitors protect the ChEs from thermal denaturation, and in some cases produce monophasic denaturation curves; we also propose a model to explain this stabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.