Teachers’ gestures are an integral part of their instructional communication. In this study, we provided a teacher with a tutorial about ways to use gesture in connecting ideas in mathematics instruction, and we asked the teacher to teach sample lessons about slope and intercept before and after this tutorial. In response to the tutorial, the teacher enhanced his communication about links between ideas by increasing the frequency with which he expressed linked ideas multi-modally (i.e., using both speech and gesture), and by increasing the frequency with which he used simultaneous gestures to linked ideas. We then presented videos of a lesson the teacher provided before the tutorial (thebaselinelesson) and one he provided after the tutorial (theenhanced-gesturelesson) to 42 seventh-grade students and assessed their learning. Students who received the enhanced-gesture lesson displayed greater learning about y-intercept than did students who received the baseline lesson. Thus, students learned more when their teacher had learned to gesture effectively.
Background: Internships for college students can enhance their grades, skills, and employment prospects, but finding and completing an internship sometimes requires considerable resources. Consequently, before postsecondary institutions consider mandating this high-impact practice, more evidence is needed regarding the various obstacles students face as they seek an internship. Focus of Study: The purpose of this study was to document the prevalence and nature of obstacles to securing a college internship and how these factors interact in the lives of particular students. Field theory is used to highlight the ways that structural inequalities and forms of capital serve to facilitate or constrain access to an internship experience. Population: The participants in this study included students attending five postsecondary institutions—three comprehensive universities, one historically Black college and university (HBCU), and one technical college in the U.S. states of Maryland, South Carolina, and Wisconsin. Research Design: This concurrent mixed-methods study included the collection of survey (n = 1,549) and focus group and interview (n = 100) data from students who self-selected into the study. Given that this is a descriptive study, the aim was to document student experiences with obstacles to internships using varied sources of data. Data Collection and Analysis: Data were collected via an online survey (with a 26% response rate) and in-person focus groups or interviews at each campus. Data were analyzed using inductive thematic analysis, social network analysis, and logistic regression techniques and interpreted in ways that highlight the situated and critical role of capital and structure in shaping opportunity and behavior. Findings: Among the 1,060 (69%) survey respondents who reported not having had an internship, 638 indicated that they had in fact wanted to pursue an internship but could not because of the need to work, a heavy course load, insufficient positions, and inadequate pay. The role of financial, social, and cultural capital also impacted students differentially depending on their majors, socioeconomic status, race, and geographic location, highlighting how context and enduring systemic forces—and not solely the possession of capital(s)—intersect to shape students’ abilities to pursue an internship. Conclusion: Internships are not universally accessible to all college students and instead favor students who have access to financial, social, and cultural capital while also being positioned in particular majors, geographic locations, and institutions. Before actively promoting internships for their students, colleges and universities should secure funding to support student pay and relocation costs, identify alternative forms of experiential learning for working students, and engage employers in creating more in-person and online positions for students across the disciplines.
Purpose The mechanisms of integration of science, technology, engineering, and mathematics (STEM) remain largely underspecified in the research and policy literatures, despite their purported benefits. Our novel claim is that one key mechanism of STEM integration is producing and maintaining cohesion of central concepts across the range of representations, objects, activities, and social structures in the engineering classroom. Method We analyze multiviewpoint videos of multiday classroom activities from Project Lead the Way (PLTW) classes in digital electronics in two urban high schools. Results To forge cohesion, teachers use coordination of representations, tools, and materials, and they use projection to reference places and events, past and future. Teachers also perform explicit identification to label central invariant relations that are the conceptual focus of their instruction. Teachers typically perform identification, coordination, and projection on the particular STEM representations used in projects in order to improve the cohesion of the conceptual content of a curriculum unit. Teachers can also represent the larger sequence of project activities within the curriculum to construct a cohesive account of how the various activities and representations relate and build upon key ideas. Conclusions This paper found that cohesion‐producing activities promote student understanding by threading conceptual relations through different mathematical representations, scientific laws, technological objects, engineering designs, learning spaces, and social structures. In these ways, cohesion can promote STEM integration in the engineering classroom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.