Parasitic nematodes that infect quail have been understudied and long been dismissed as a problem in quail management. Within the Rolling Plains ecoregion of Texas, an area that has experienced quail population “boom and bust” cycles and ultimately a general decline, the need to determine why Northern bobwhite (Colinus virginianus) populations are diminishing has increased in priority. Previously, caecal parasites have been documented to cause inactivity, weight loss, reduced growth, inflammation to the caecal mucosa, and even death. The caecal worm Aulonocephalus pennula is an intestinal nematode parasite that is commonly found within the caecum of quail, as well as many other avian species. In the Rolling Plains ecoregion, A. pennula has been documented to have as high as a 98% prevalence in bobwhite quail samples; however, the effect it has on its host is not well understood. The present study documents A. pennula causes no pathological changes within the caeca of the Northern bobwhite. However, there is concern for disruption of digestion and the possible implications of infection for wild bobwhite quail survival are discussed.
Aulonocephalus pennula is a heteroxenous nematode that commonly infects a declining game bird, the northern bobwhite quail (Colinus virginianus). There is a lack of information on the life cycle of A. pennula and the potential effects of infection on bobwhites. In order to better understand the life cycle of this parasite, various species from the order Orthoptera were collected from a field site in Mitchell County, Texas. Using polymerase chain reaction (PCR), nine potential intermediate hosts were identified from the 35 orthopteran species collected. Later, ten live specimens were collected to identify larvae within the potential intermediate hosts. Larvae were present in three of these and were sent for sequencing. Similarly, the presence of larvae was confirmed from extra tissues of samples identified as positive with PCR. This was the first study to document potential intermediate hosts, but future studies are needed to confirm that these species are capable of transmitting infection to bobwhite. However, this study demonstrates that PCR has increased sensitivity and may be a valuable tool when determining intermediate hosts.
The potential of parasites to affect host abundance has been a topic of heated contention within the scientific community for some time, with many maintaining that issues such as habitat loss are more important in regulating wildlife populations than diseases. This is in part due to the difficulty in detecting and quantifying the consequences of disease, such as parasitic infection, within wild systems. An example of this is found in the Northern bobwhite quail (
Colinus virginanus
), an iconic game bird that is one of the most extensively studied vertebrates on the planet. Yet, despite countless volumes dedicated to the study and management of this bird, bobwhite continue to disappear from fields, forest margins, and grasslands across the United States in what some have referred to as “our greatest wildlife tragedy”. Here, we will discuss the history of disease and wildlife conservation, some of the challenges wildlife disease studies face in the ever-changing world, and how a “weight of evidence” approach has been invaluable to evaluating the impact of parasites on bobwhite in the Rolling Plains of Texas. Through this, we highlight the potential of using “weight of the evidence” to better understand the complex effects of diseases on wildlife and urge a greater consideration of the importance of disease in wildlife conservation.
Physaloptera spp. are common nematodes found in the stomach and muscles of mammals, reptiles, amphibians, and birds. Physaloptera spp. have a complicated life cycle with multiple definitive hosts, arthropod intermediate hosts, aberrant infections, and possible second intermediate hosts or paratenic hosts. For example, Physaloptera sp. larvae have been found within the tissues of wild northern bobwhite quail (Colinus virginianus), and it is suspected that quail may serve as paratenic or secondary hosts of these parasites. However, because it is not known what role quail play in the life cycle of Physaloptera spp. and descriptions of Physaloptera spp. larvae are limited, molecular tools may be beneficial when identifying these helminths. In this study, we generated primers using universal nematode primers and obtained a partial mitochondrial cytochrome oxidase 1 (COX 1) sequence. Morphological identification of Physaloptera sp. in bobwhite was confirmed via polymerase chain reaction (PCR), and a phylogenetic tree was constructed using the maximum likelihood method. BLAST analysis revealed a strong identity to other Physaloptera spp. and the phylogenetic tree placed all Physaloptera spp. in the same cluster. We also documented a marked increase in Physaloptera infections in bobwhite from 2017 to 2018, and the similarity of these parasites to Onchocerca volvulus and Wuchereria bancrofti may give insight into the increased prevalence we observed. This study demonstrates the usefulness of molecular techniques to confirm the identity of species that may lack adequate descriptions and provides new insight for the diagnosis and potentially overlooked significance of Physaloptera sp. infections of bobwhite in the Rolling Plains ecoregion of Texas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.