IntroductionMagnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T.MethodsIn a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF).ResultsThe diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T.ConclusionsThe potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study.
IntroductionIn brain perfusion imaging, arterial spin labeling (ASL) is a noninvasive alternative to dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI). For clinical imaging, only product sequences can be used. We therefore analyzed the performance of a product sequence (PICORE-PASL) included in an MRI software-package compared with DSC-MRI in patients with steno-occlusion of the MCA or ICA >70%.MethodsImages were acquired on a 3T MRI system and qualitatively analyzed by 3 raters. For a quantitative analysis, cortical ROIs were placed in co-registered ASL and DSC images. Pooled data for ASL-cerebral blood flow (CBF) and DSC-CBF were analyzed by Spearman’s correlation and the Bland-Altman (BA)-plot.ResultsIn 28 patients, 11 ASL studies were uninterpretable due to patient motion. Of the remaining patients, 71% showed signs of delayed tracer arrival. A weak correlation for DSC-relCBF vs ASL-relCBF (r = 0.24) and a large spread of values in the BA-plot owing to unreliable CBF-measurement was found.ConclusionThe PICORE ASL product sequence is sensitive for estimation of delayed tracer arrival, but cannot be recommended to measure CBF in steno-occlusive disease. ASL-sequences that are less sensitive to patient motion and correcting for delayed blood flow should be available in the clinical setting.
Pulsed arterial spin labeling (PASL) at multiple inflow times (multi-TIs) is advantageous for the measurement of brain perfusion in patients with long arterial transit times (ATTs) as in steno-occlusive disease, because bolus-arrival-time can be measured and blood flow measurements can be corrected accordingly. Owing to its increased signal-to-noise ratio, a combination with a three-dimensional gradient and spin echo (GRASE) readout allows acquiring a sufficient number of multi-TIs within a clinically feasible acquisition time of 5 minutes. We compared this technique with the clinical standard dynamic susceptibility-weighted contrast-enhanced imaging-magnetic resonance imaging in patients with unilateral stenosis >70% of the internal carotid or middle cerebral artery (MCA) at 3 Tesla. We performed qualitative (assessment by three expert raters) and quantitative (region of interest (ROI)/volume of interest (VOI) based) comparisons. In 43 patients, multi-TI PASL-GRASE showed perfusion alterations with moderate accuracy in the qualitative analysis. Quantitatively, moderate correlation coefficients were found for the MCA territory (ROI based: r=0.52, VOI based: r=0.48). In the anterior cerebral artery (ACA) territory, a readout related right-sided susceptibility artifact impaired correlation (ROI based: r=0.29, VOI based: r=0.34). Arterial transit delay artifacts were found only in 12% of patients. In conclusion, multi-TI PASL-GRASE can correct for arterial transit delay in patients with long ATTs. These results are promising for the transfer of ASL to the clinical practice.
Background and PurposeIn acute stroke, the DWI-FLAIR mismatch allows for the allocation of patients to the thrombolysis window (<4.5 hours). FLAIR-lesions, however, may be challenging to assess. In comparison, DWI may be a useful bio-marker owing to high lesion contrast. We investigated the performance of a relative DWI signal intensity (rSI) threshold to predict the presence of FLAIR-lesions in acute stroke and analyzed its association with time-from-stroke-onset.MethodsIn a retrospective, dual-center MR-imaging study we included patients with acute stroke and time-from-stroke-onset ≤12 hours (group A: n = 49, 1.5T; group B: n = 48, 3T). DW- and FLAIR-images were coregistered. The largest lesion extent in DWI defined the slice for further analysis. FLAIR-lesions were identified by 3 raters, delineated as regions-of-interest (ROIs) and copied on the DW-images. Circular ROIs were placed within the DWI-lesion and labeled according to the FLAIR-pattern (FLAIR+ or FLAIR−). ROI-values were normalized to the unaffected hemisphere. Adjusted and nonadjusted receiver-operating-characteristics (ROC) curve analysis on patient level was performed to analyze the ability of a DWI- and ADC-rSI threshold to predict the presence of FLAIR-lesions. Spearman correlation and adjusted linear regression analysis was performed to assess the relationship between DWI-intensity and time-from-stroke-onset.ResultsDWI-rSI performed well in predicting lesions in FLAIR-imaging (mean area under the curve (AUC): group A: 0.84; group B: 0.85). An optimal mean DWI-rSI threshold was identified (A: 162%; B: 161%). ADC-maps performed worse (mean AUC: A: 0.58; B: 0.77). Adjusted regression models confirmed the superior performance of DWI-rSI. Correlation coefficents and linear regression showed a good association with time-from-stroke-onset for DWI-rSI, but not for ADC-rSI.ConclusionAn easily assessable DWI-rSI threshold identifies the presence of lesions in FLAIR-imaging with good accuracy and is associated with time-from-stroke-onset in acute stroke. This finding underlines the potential of a DWI-rSI threshold as a marker of lesion age.
We showed that susceptibility distortion correction strongly improves the comparability of multi-TI ASL 3D-GRASE to DSC in steno-occlusive disease. We suggest it to be implemented in ASL postprocessing routines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.