TREM2 is an innate immune receptor expressed on the surface of microglia. Loss‐of‐function mutations of TREM2 are associated with increased risk of Alzheimer's disease (AD). TREM2 is a type‐1 protein with an ectodomain that is proteolytically cleaved and released into the extracellular space as a soluble variant (sTREM2), which can be measured in the cerebrospinal fluid (CSF). In this cross‐sectional multicenter study, we investigated whether CSF levels of sTREM2 are changed during the clinical course of AD, and in cognitively normal individuals with suspected non‐AD pathology (SNAP). CSF sTREM2 levels were higher in mild cognitive impairment due to AD than in all other AD groups and controls. SNAP individuals also had significantly increased CSF sTREM2 compared to controls. Moreover, increased CSF sTREM2 levels were associated with higher CSF total tau and phospho‐tau181P, which are markers of neuronal degeneration and tau pathology. Our data demonstrate that CSF sTREM2 levels are increased in the early symptomatic phase of AD, probably reflecting a corresponding change of the microglia activation status in response to neuronal degeneration.
Coding variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are associated with late onset Alzheimer’s disease (AD). We demonstrate that amyloid plaque seeding is increased in the absence of functional Trem2. Increased seeding is accompanied by decreased microglial clustering around newly seeded plaques and reduced plaque associated Apolipoprotein E (ApoE). Reduced ApoE deposition in plaques is also observed in brains of AD patients carrying TREM2 coding variants. Proteomic analyses and microglia depletion experiments revealed microglia as one origin of plaque associated ApoE. Longitudinal amyloid small animal positron emission tomography demonstrates accelerated amyloidogenesis in Trem2 loss of function mutants at early stages, which progressed at a lower rate with aging. These findings suggest that in the absence of functional Trem2 early amyloidogenesis is accelerated due to reduced phagocytic clearance of amyloid seeds despite reduced plaque associated ApoE.
The remarkable difference in success rates between clinical pancreas transplantation and islet transplantation is poorly understood. Despite the same histocompatibility barrier and similar immunosuppressive treatments in both transplantation procedures, human intraportal islet transplantation has a much inferior success rate than does vascularized pancreas transplantation. Thus far, little attention has been directed to the possibility that islets transplanted into the blood stream may elicit an injurious incompatibility reaction. We have tested this hypothesis in vitro with human islets and in vivo with porcine islets. Human islets were exposed to nonanticoagulated human ABO-compatible blood in surface-heparinized polyvinyl chloride tubing loops. Heparin and/or the soluble complement receptor 1 (sCR1) TP10 were tested as additives. Adult porcine islets were transplanted intraportally into pigs, and the liver was recovered after 60 min for immunohistochemical staining. Human islets induced a rapid consumption and activation of platelets. Neutrophils and monocytes were also consumed, and the coagulation and complement systems were activated. Upon histological examination, islets were found to be embedded in clots and infiltrated with CD11+ leukocytes. Furthermore, the cellular morphology was disrupted. When heparin and sCR1 were added to the blood, these events were avoided. Porcine islets retrieved in liver biopsies after intraportal islet allotransplantation showed a morphology similar to that of human islets perifused in vitro. Thus, exposure of isolated islets of Langerhans to allogenic blood resulted in significant damage to the islets, a finding that could explain the unsatisfactory clinical results obtained with intraportal islet transplantation. Because administration of heparin in combination with a soluble complement receptor abrogated these events, such treatment would presumably improve the outcome of clinical islet transplantation by reducing both initial islet loss and subsequent specific immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.