Alzheimer's disease is the most prevalent tauopathy and cause of dementia. We investigate the hypothesis that reactivation of plasticity can restore function in the presence of neuronal damage resulting from tauopathy. We investigated two models with tau hyperphosphorylation, aggregation and neurodegeneration: a transgenic mouse model in which the mutant P301S tau is expressed in neurons (Tg P301S), and a model in which an adeno-associated virus expressing P301S tau (AAV-P301S) was injected in the perirhinal cortex, a region critical for object recognition (OR) memory. Both models show profound loss of OR memory despite only 15% neuronal loss in the Tg P301S and 26% in AAV-P301S-injected mice. Recordings from perirhinal cortex slices of 3 month-old P301S transgenic mice showed a diminution in synaptic transmission following temporal stimulation. Chondroitinase ABC (ChABC) can reactivate plasticity and affect memory through actions on perineuronal nets. ChABC was injected into the perirhinal cortex and animals were tested for OR memory 1 week later, demonstrating restoration of OR memory to normal levels. Synaptic transmission indicated by fEPSP amplitude was restored to control levels following ChABC treatment. ChABC did not affect the progression of neurodegenerative tauopathy. These findings suggest that increasing plasticity by manipulation of perineuronal nets offers a novel therapeutic approach to the treatment of memory loss in neurodegenerative disorders.
γ‐Secretase is an unconventional aspartyl protease that processes many type 1 membrane proteins within the lipid bilayer. Because its cleavage of amyloid‐β precursor protein generates the amyloid‐β protein (Aβ) of Alzheimer’s disease, partially inhibiting γ‐secretase is an attractive therapeutic strategy, but the structure of the protease remains poorly understood. We recently used electron microscopy and single particle image analysis on the purified enzyme to generate the first 3D reconstruction of γ‐secretase, but at low resolution (15 Å). The limited amount of purified γ‐secretase that can be produced using currently available cell lines and procedures has prevented the achievement of a high resolution crystal structure by X‐ray crystallography or 2D crystallization. We report here the generation and characterization of a new mammalian cell line (S‐20) that overexpresses strikingly high levels of all four γ‐secretase components (presenilin, nicastrin, Aph‐1 and Pen‐2). We then used these cells to develop a rapid protocol for the high‐grade purification of proteolytically active γ‐secretase. The cells and purification methods detailed here provide a key step towards crystallographic studies of this ubiquitous enzyme.
Parkinson's disease (PD) is characterized by the selective degeneration of neuronal populations presumably due to pathogenic interactions between aging and predisposing factors such as increased levels of α-synuclein. Here, we genetically modulate the activity of the transcription factor Forkhead box protein O3 (FOXO3) in adult nigral dopaminergic neurons using viral vectors and explore how this determinant of longevity impacts on neuronal fate in normal and diseased conditions. We find that dopaminergic neurons are particularly vulnerable to changes in FOXO3 activity in the substantia nigra. While constitutive activation has proapoptotic effects leading to neuronal loss, inhibition of FOXO-mediated transcription by a dominant-negative competitor causes oxidative damage and is detrimental at high vector dose. To address the role of FOXO3 in PD, we modulate its activity in dopaminergic neurons overexpressing human α-synuclein. In this pathogenic condition, we find that FOXO inhibition has protective effects, suggesting that this transcription factor ultimately contributes to neuronal cell death. Nevertheless, mild FOXO3 activity also protects nigral neurons against the accumulation of human α-synuclein, albeit to a lesser extent. FOXO3 reduces the amount of α-synuclein present in the soluble protein fraction and promotes the coalescence of dense proteinase K-resistant aggregates, with an accumulation of autophagic vacuoles containing lipofuscin. Consistent with these in vivo observations, we find that FOXO3 controls autophagic flux in neuronal cells. Altogether, these results point to FOXO3 as an important determinant of neuronal survival in the substantia nigra, which may oppose α-synuclein accumulation and proteotoxicity.
The development of new diagnostic criteria for Alzheimer's disease (AD) requires new in vivo markers reflecting early pathological changes in the brain of patients. Magnetic resonance (MR) spectroscopy has been shown to provide useful information about the biochemical changes occurring in AD brain in vivo. The development of numerous transgenic mouse models of AD has facilitated the evaluation of early biomarkers, allowing researchers to perform longitudinal studies starting before the onset of the pathology. In addition, the recent development of high-field animal scanners enables the measurement of brain metabolites that cannot be reliably quantified at lower magnetic fields. In this report, we studied a new transgenic mouse model of AD, the 5xFAD model, by in vivo proton and phosphorus MR spectroscopy. This model, which is characterized by an early-onset and a robust amyloid pathology, developed changes in the neurochemical profile, which are typical in the human disease, i.e., an increase in myo-inositol and a decrease in N-acetylaspartate concentrations, as early as in the 40th week of age. In addition, a significant decrease in the γ-aminobutyrate concentration was observed in transgenic mice at this age compared to controls. The pseudo-first-order rate constant of the creatine kinase reaction as well as relative concentrations of phosphorus-containing metabolites were not changed significantly in the 36 and 72-week old transgenic mice. Overall, these results suggest that mitochondrial activity in the 5 × FAD mice is not substantially affected but that the model is relevant for studying early biomarkers of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.