General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
This paper presents a new key management protocol for group-based communications in non-hierarchical wireless sensor networks (WSNs), applied on a recently proposed IP-based multicast protocol. Confidentiality, integrity, and authentication are established, using solely symmetric-key-based operations. The protocol features a cloud-based network multicast manager (NMM), which can create, control, and authenticate groups in the WSN, but is not able to derive the actual constructed group key. Three main phases are distinguished in the protocol. First, in the registration phase, the motes register to the group by sending a request to the NMM. Second, the members of the group calculate the shared group key in the key construction phase. For this phase, two different methods are tested. In the unicast approach, the key material is sent to each member individually using unicast messages, and in the multicast approach, a combination of Lagrange interpolation and a multicast packet are used. Finally, in the multicast communication phase, these keys are used to send confidential and authenticated messages. To investigate the impact of the proposed mechanisms on the WSN, the protocol was implemented in ContikiOS and simulated using COOJA, considering different group sizes and multi-hop communication. These simulations show that the multicast approach compared to the unicast approach results in significant smaller delays, is a bit more energy efficient, and requires more or less the same amount of memory for the code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.