Drug-target residence time (τ), one of the main determinants of drug efficacy, remains highly challenging to predict computationally and, therefore, is usually not considered in the early stages of drug design. Here, we present an efficient computational method, τ-random acceleration molecular dynamics (τRAMD), for the ranking of drug candidates by their residence time and obtaining insights into ligand-target dissociation mechanisms. We assessed τRAMD on a data set of 70 diverse drug-like ligands of the N-terminal domain of HSP90α, a pharmaceutically important target with a highly flexible binding site, obtaining computed relative residence times with an accuracy of about 2.3τ for 78% of the compounds and less than 2.0τ within congeneric series. Analysis of dissociation trajectories reveals features that affect ligand unbinding rates, including transient polar interactions and steric hindrance. These results suggest that τRAMD will be widely applicable as a computationally efficient aid to improving drug residence times during lead optimization.
Understanding the structural biology of the insulin receptor and how it signals is of key importance in the development of insulin analogs to treat diabetes. We report here a cryo-electron microscopy structure of a single insulin bound to a physiologically relevant, high-affinity version of the receptor ectodomain, the latter generated through attachment of C-terminal leucine zipper elements to overcome the conformational flexibility associated with ectodomain truncation. The resolution of the cryo-electron microscopy maps is 3.2 Å in the insulin-binding region and 4.2 Å in the membrane-proximal region. The structure reveals how the membrane proximal domains of the receptor come together to effect signalling and how insulin’s negative cooperativity of binding likely arises. Our structure further provides insight into the high affinity of certain super-mitogenic insulins. Together, these findings provide a new platform for insulin analog investigation and design.
Bone morphogenetic proteins (BMPs) belong to the large transforming growth factor-beta (TGF-beta) superfamily of multifunctional cytokines. BMP-2 can induce ectopic bone and cartilage formation in adult vertebrates and is involved in central steps in early embryonal development in animals. Signaling by these cytokines requires binding of two types of transmembrane serine/threonine receptor kinase chains classified as type I and type II. Here we report the crystal structure of human dimeric BMP-2 in complex with two high affinity BMP receptor IA extracellular domains (BRIAec). The receptor chains bind to the 'wrist' epitopes of the BMP-2 dimer and contact both BMP-2 monomers. No contacts exist between the receptor domains. The model reveals the structural basis for discrimination between type I and type II receptors and the variability of receptor-ligand interactions that is seen in BMP-TGF-beta systems.
We here report on non-equilibrium targeted Molecular Dynamics simulations as tool for the estimation of protein-ligand unbinding kinetics. With this method, we furthermore investigate the molecular basis determining unbinding rates, correlating simulations with experimental data from SPR kinetics measurements and X-ray crystallography on two small molecule compound libraries bound to the N-terminal domain of the chaperone Hsp90. Within the investigated libraries, we find ligand conformational changes and protein-ligand nonbonded interactions as discriminators for unbinding rates. Ligands with flexible chemical scaffold may remain longer at the protein target if they need to pass through extended conformations upon unbinding, or if they exhibit strong electrostatic and/or van der Waals interactions with the target. Ligands with rigid chemical scaffold can exhibit longer residence times if they need to perform any kind of conformational change for unbinding, while electrostatic interactions with the protein can facilitate unbinding. Our resultsshow that understanding the unbinding pathway and the protein-ligand interactions along this path is crucial for the prediction of small molecule ligands with defined unbinding kinetics.
Supporting InformationFour supporting tables, nine supporting figures and additional references (PDF)
SMILES annotations (CSV)
Accession CodesThe crystallographic coordinates of novel compounds are deposited in the Protein Data Bank under the accession codes 5LRL (2d) and 5LO1 (2j). Authors will release the atomic coordinates and experimental data upon article publication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.