The major developments and applications related to CE-MS over the last two years (2003-2004) and most of the reviews and applications found in the ISI Web of Science and publisher data bases are presented in a tabulated way. This article complements our previous review "Capillary electrophoresis - mass spectrometry: 15 years of developments and applications", Electrophoresis, 2003, 24, 3837-3867 for the last two years 2003-2004. All cited articles were analyzed in a way to illustrate (i) in which journals CE-MS-related papers were mostly found over the last decades and (ii) which commercial CE-, MS-instrumentations or CE-MS combinations were mostly used in the European, Asian, and American continent. Additionally, like it was done in our last review, the reader will rapidly find applications classified as forensics, environment, bioanalytics, pharmaceutics, and metabolites.
Bacterial intraspecies and interspecies communication in the rhizosphere is mediated by diffusible signal molecules. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as autoinducers in the quorum sensing response. While bacterial signalling is well described, the fate of AHLs in contact with plants is much less known. Thus, adsorption, uptake and translocation of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-decanoyl-homoserine lactone (C10-HSL) were studied in axenic systems with barley (Hordeum vulgare L.) and the legume yam bean (Pachyrhizus erosus (L.) Urban) as model plants using ultra-performance liquid chromatography (UPLC), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tritium-labelled AHLs. Decreases in AHL concentration due to abiotic adsorption or degradation were tolerable under the experimental conditions. The presence of plants enhanced AHL decline in media depending on the compounds' lipophilicity, whereby the legume caused stronger AHL decrease than barley. All tested AHLs were traceable in root extracts of both plants. While all AHLs except C10-HSL were detectable in barley shoots, only C6-HSL was found in shoots of yam bean. Furthermore, tritium-labelled AHLs were used to determine short-term uptake kinetics. Chiral separation by GC-MS revealed that both plants discriminated D-AHL stereoisomers to different extents. These results indicate substantial differences in uptake and degradation of different AHLs in the plants tested.
CE-MS has gained further attention as a multidimensional analytical approach. The number of publications dealing with this technique is still increasing on the level of application as well as method development-oriented approaches. Additionally, 15 reviews were published the last two years focusing on CE-MS. An overview of all papers found to have been published within 2005 and 2006 is given in tabulated form. Additionally, four promising technical trends are chosen to be presented in detail: (i) chip-based CE-MS, (ii) capillary coatings in CE-MS, (iii) new trends in CEC-MS and (iv) the application of 2-D CE-MS.
N-Acylated homoserine lactones (AHLs) are produced by Gram-negative bacteria as communication signals and are frequently studied as mediators of the "quorum sensing" response of bacterial communities. Several reports have recently been published on the identification of AHLs from different species and attempts have been made to study their role in natural habitats, for example the surface of plant roots in the rhizosphere. In this article, different analytical methods, including bacterial biosensors and chromatographic techniques, are reviewed. A concept for assignment of the structures of AHLs is also presented. The retention behaviour of derivatives of AHLs containing beta-keto or hydroxyl groups and/or double bonds has been evaluated in relation to the separation behaviour of AHLs with saturated and unsubstituted alkanoyl chains. Samples have also been analysed by high resolution mass spectrometry (Fourier-transform ion-cyclotron-resonance mass spectrometry, FTICR-MS), nano liquid chromatography-electrospray ionization ion trap mass spectrometry (nano-LC-MS) and by the aid of a biosensor. The results obtained from ultra performance liquid chromatography (UPLC), FTICR-MS, nano-LC-MS, and bioassays have been compared to attempt structural characterisation of AHL without chemical synthesis of analytical standards. The method was used to identify the major AHL compound produced by the rhizosphere bacterium Acidovorax sp. N35 as N-(3-hydroxydecanoyl)homoserine lactone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.