Predictions are issued on the basis of certain information. If the forecasting mechanisms are correctly specified, a larger amount of available information should lead to better forecasts. For point forecasts, we show how the effect of increasing the information set can be quantified by using strictly consistent scoring functions, where it results in smaller average scores. Further, we show that the classical Diebold-Mariano test, based on strictly consistent scoring functions and asymptotically ideal forecasts, is a consistent test for the effect of an increase in a sequence of information sets on h-step point forecasts. For the value at risk (VaR), we show that the average score, which corresponds to the average quantile risk, directly relates to the expected shortfall. Thus, increasing the information set will result in VaR forecasts which lead on average to smaller expected shortfalls. We illustrate our results in simulations and applications to stock returns for unconditional versus conditional risk management as well as univariate modeling of portfolio returns versus multivariate modeling of individual risk factors. The role of the information set for evaluating probabilistic forecasts by using strictly proper scoring rules is also discussed.
We construct uniform and point-wise asymptotic confidence sets for the single edge in an otherwise smooth image function which are based on rotated differences of two one-sided kernel estimators. Using methods from Mestimation, we show consistency of the estimators of location, slope and height of the edge function and develop a uniform linearization of the contrast process. The uniform confidence bands then rely on a Gaussian approximation of the score process together with anti-concentration results for suprema of Gaussian processes, while point-wise bands are based on asymptotic normality. The finite-sample performance of the point-wise proposed methods is investigated in a simulation study. An illustration to real-world image processing is also given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.