Abstract:We present laser-induced forward transfer of solid-phase polymer films, shaped using a Digital Micromirror Device (DMD) as a variable illumination mask. Femtosecond laser pulses with a fluence of 200-380 mJ/cm 2 at a wavelength of 800 nm from a Ti:sapphire amplifier were used to reproducibly transfer thin films of poly(methyl methacrylate) as small as ~30 µm by ~30 µm with thickness ~1.3 µm. This first demonstration of DMD-based solid-phase LIFT shows minimum feature sizes of ~10µm.
We have demonstrated the fabrication of a thermoelectric energy harvesting device via laser-induced forward transfer of intact solid thin films. Thermoelectric chalcogenide materials, namely bismuth telluride (Bi2Te3), bismuth selenide (Bi2Se3) and bismuth antimony telluride (Bi0.5Sb1.5Te3), were sequentially printed using a nanosecond excimer laser onto an elastomeric polydimethylsiloxane-coated glass substrate to form thermocouples connected in series creating a thermoelectric generator. The resulting generator Seebeck coefficient and series resistance per leg pair were measured to be 0.17 mV K−1 and 10 kΩ respectively. It was shown that laser-induced forward transfer allows device fabrication from inorganic semiconductor compounds on inexpensive elastic polymer substrates and demonstrates the ability to print materials with pre-defined thermoelectric properties. This allows the rapid manufacturing of a complete thermoelectric device on mm2-areas with μm-scale precision, without the need of further lithographic steps.
We present a rapid technique for the patterning of complex structures with ~2µm resolution via multiphoton polymerization, through use of a single ultrashort pulse in combination with the spatial intensity modulation possible from a digital multimirror device. Sub-micron features have been achieved through the use of ten consecutive pulses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.