We present a 3D reconstruction algorithm with sparsity constraints for electrical impedance tomography (EIT). EIT is the inverse problem of determining the distribution of conductivity in the interior of an object from simultaneous measurements of currents and voltages on its boundary. The feasibility of the sparsity reconstruction approach is tested with real data obtained from a new planar EIT device developed at the The complete electrode model is adapted for the given device to handle incomplete measurements and the inhomogeneities of the conductivity are a priori assumed to be sparse with respect to a certain basis. This prior information is incorporated into a Tikhonov-type functional by including a sparsity-promoting 1 -regularization term. The functional is minimized with an iterative soft shrinkage-type algorithm.
We present a finite element analysis of electrical impedance tomography for reconstructing the conductivity distribution from electrode voltage measurements by means of Tikhonov regularization. Two popular choices of the penalty term, i.e., H 1 (Ω)-norm smoothness penalty and total variation seminorm penalty, are considered. A piecewise linear finite element method is employed for discretizing the forward model, i.e., the complete electrode model, the conductivity, and the penalty functional. The convergence of the finite element approximations for the Tikhonov model on both polyhedral and smooth curved domains is established. This provides rigorous justifications for the ad hoc discretization procedures in the literature.
In this paper, we study a fast approximate inference method based on expectation propagation for exploring the posterior probability distribution arising from the Bayesian formulation of nonlinear inverse problems. It is capable of efficiently delivering reliable estimates of the posterior mean and covariance, thereby providing an inverse solution together with quantified uncertainties. Some theoretical properties of the iterative algorithm are discussed, and the efficient implementation for an important class of problems of projection type is described. The method is illustrated with one typical nonlinear inverse problem, electrical impedance tomography with complete electrode model, under sparsity constraints. Numerical results for real experimental data are presented, and compared with that by Markov chain Monte Carlo. The results indicate that the method is accurate and computationally very efficient.
We study the numerical recovery of Manning's roughness coefficient for the diffusive wave approximation of the shallow water equation. We describe a conjugate gradient method for the numerical inversion. Numerical results for one-dimensional model are presented to illustrate the feasibility of the approach. Also we provide a proof of the differentiability of the weak form with respect to the coefficient as well as the continuity and boundedness of the linearized operator under reasonable assumptions using the maximal parabolic regularity theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.