Bacillus subtilis is widely underappreciated for its inherent biosynthetic potential. This report comprehensively summarizes the known bioactive secondary metabolites from B. subtilis and highlights potential applications as plant pathogen control agents, drugs, and biosurfactants. B. subtilis is well known for the production of cyclic lipopeptides exhibiting strong surfactant and antimicrobial activities, such as surfactins, iturins, and fengycins. Several polyketide-derived macrolides as well as nonribosomal peptides, dihydroisocoumarins, and linear lipopeptides with antimicrobial properties have been reported, demonstrating the biosynthetic arsenal of this bacterium. Promising efforts toward the application of B. subtilis strains and their natural products in areas of agriculture and medicine are underway. However, industrial-scale availability of these compounds is currently limited by low fermentation yields and challenging accessibility via synthesis, necessitating the development of genetically engineered strains and optimized cultivation processes. We hope that this review will attract renewed interest in this often-overlooked bacterium and its impressive biosynthetic skill set.
Nucleoside analogs represent a class of important drugs for cancer and antiviral treatments. Nucleoside phosphorylases (NPases) catalyze the phosphorolysis of nucleosides and are widely employed for the synthesis of pentose‐1‐phosphates and nucleoside analogs, which are difficult to access via conventional synthetic methods. However, for the vast majority of nucleosides, it has been observed that either no or incomplete conversion of the starting materials is achieved in NPase‐catalyzed reactions. For some substrates, it has been shown that these reactions are reversible equilibrium reactions that adhere to the law of mass action. In this contribution, we broadly demonstrate that nucleoside phosphorolysis is a thermodynamically controlled endothermic reaction that proceeds to a reaction equilibrium dictated by the substrate‐specific equilibrium constant of phosphorolysis, irrespective of the type or amount of NPase used, as shown by several examples. Furthermore, we explored the temperature‐dependency of nucleoside phosphorolysis equilibrium states and provide the apparent transformed reaction enthalpy and apparent transformed reaction entropy for 24 nucleosides, confirming that these conversions are thermodynamically controlled endothermic reactions. This data allows calculation of the Gibbs free energy and, consequently, the equilibrium constant of phosphorolysis at any given reaction temperature. Overall, our investigations revealed that pyrimidine nucleosides are generally more susceptible to phosphorolysis than purine nucleosides. The data disclosed in this work allow the accurate prediction of phosphorolysis or transglycosylation yields for a range of pyrimidine and purine nucleosides and thus serve to empower further research in the field of nucleoside biocatalysis.
SummarySmall non-coding RNAs (sRNAs) have been found to regulate gene expression in all three kingdoms of life. So far, relatively little is known about sRNAs from Gram-positive bacteria. SR1 is a regulatory sRNA from the Bacillus subtilis chromosome that inhibits by base-pairing translation initiation of ahrC mRNA encoding a transcriptional activator of the arginine catabolic operons. Here we present a novel target of SR1, the glycolytic gapA operon. Both microarray and Northern blot analyses show that the amount of gapA operon mRNA is significantly higher in the presence of SR1 when cells were grown in complex medium until stationary phase. Translational lacZ fusions and toeprinting analyses demonstrate that SR1 does not promote translation of gapA mRNA. By contrast, the half-life of gapA operon mRNA is strongly reduced in the sr1 knockout strain. SR1 does not act as a basepairing sRNA on gapA operon mRNA. Instead, we demonstrate that the 39 aa peptide encoded by SR1, SR1P, is responsible for the effect of SR1 on the gapA operon. We show that SR1P binds GapA, thereby stabilizing the gapA operon mRNA by a hitherto unknown mechanism. SR1 is the first dual-function sRNA found in B. subtilis.
The biocatalytic synthesis of natural and modified nucleosides with nucleoside phosphorylases offers the protecting‐group‐free direct glycosylation of free nucleobases in transglycosylation reactions. This contribution presents guiding principles for nucleoside phosphorylase‐mediated transglycosylations alongside mathematical tools for straightforward yield optimization. We illustrate how product yields in these reactions can easily be estimated and optimized using the equilibrium constants of phosphorolysis of the nucleosides involved. Furthermore, the varying negative effects of phosphate on transglycosylation yields are demonstrated theoretically and experimentally with several examples. Practical considerations for these reactions from a synthetic perspective are presented, as well as freely available tools that serve to facilitate a reliable choice of reaction conditions to achieve maximum product yields in nucleoside transglycosylation reactions.
SR1 is a dual-function sRNA from B. subtilis that acts as a base-pairing regulatory RNA and as a peptide-encoding mRNA. Both functions of SR1 are highly conserved. Previously, we uncovered that the SR1 encoded peptide SR1P binds the glycolytic enzyme GapA resulting in stabilization of gapA mRNA. Here, we demonstrate that GapA interacts with RNases Y and J1, and this interaction was RNA-independent. About 1% of GapA molecules purified from B. subtilis carry RNase J1 and about 2% RNase Y. In contrast to the GapA/RNase Y interaction, the GapA/RNaseJ1 interaction was stronger in the presence of SR1P. GapA/SR1P-J1/Y displayed in vitro RNase activity on known RNase J1 substrates. Moreover, the RNase J1 substrate SR5 has altered half-lives in a ΔgapA strain and a Δsr1 strain, suggesting in vivo functions of the GapA/SR1P/J1 interaction. Our results demonstrate that the metabolic enzyme GapA moonlights in recruiting RNases while GapA bound SR1P promotes binding of RNase J1 and enhances its activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.