Prostate cancer is the second most prevalent cancer in males in the United States. Standard therapy relies on removing, or blocking the actions of, androgens. In most cases, this therapy results in a regression of the cancer because the prostate and most primary prostate tumors depend on androgens for growth and the avoidance of apoptosis. However, a portion of the cancers eventually relapse, at which point they are termed "androgen refractory" and can no longer be cured by conventional therapy of any type. The precise molecular events that lead from androgen-sensitive prostate cancer to androgen-refractory prostate cancer are, therefore, of great interest. This review seeks to identify specific molecular events that may be linked directly to the progression to androgen-refractory cancer. Some of the mechanisms appear to involve the androgen receptor (AR) directly and include mutations in, or amplification of, the AR gene in a manner that allows the AR to respond to low doses of androgens, other steroids, or antiandrogens. In a less direct manner, coactivators may increase the sensitivity of the AR to androgens and even other nonandrogenic substances through a number of mechanisms. Additional indirect mechanisms that do not result from mutation of the AR may involve activation of the AR by peptide growth factors or cytokines or may involve bypassing the AR entirely via other cellular pathways. Identification of the role of these mechanisms in the progression to androgen-refractory prostate cancer is critical for developing therapies capable of curing this disease.
There is now substantial evidence that overweight and/or obesity and/or weight gain are risk factors for the development of postmenopausal breast cancer. In addition, obesity and/or elevated body mass index at breast cancer diagnosis has a negative impact on prognosis for both premenopausal and postmenopausal women. Therefore, understanding the mechanism of how obesity affects the mammary tumorigenesis process is an important health issue. Elevated serum estrogen levels as well as enhanced local production of estrogen have been considered primary mediators of how increased body weight promotes breast cancer development in postmenopausal women. Here, we provide an overview of estrogen's relationship with both obesity and breast cancer as separate entities. Human and relevant preclinical studies are cited. In addition, other growth factors that may be involved in this relationship are considered.
Obesity is a risk factor for postmenopausal breast cancer. Adiponectin/Acrp30 is lower in obese individuals and may be negatively regulating breast cancer growth. Here we determined that five breast cancer cell lines, MDA-MB-231, MDA-MB-361, MCF-7, T47D, and SK-BR-3, expressed one or both of the Acrp30 receptors. In addition, we found that the addition of Acrp30 to MCF-7, T47D, and SK-BR-3 cell lines inhibited growth. Oestrogen receptor (ER) positive MCF-7 and T47D cells were inhibited at lower Acrp30 concentrations than ER-negative SK-BR-3 cells. Growth inhibition may be related to apoptosis since PARP cleavage was increased by Acrp30 in the ER-positive cell lines. To investigate the role of ER in the response of breast cancer cells to Acrp30, we established the MDA-ERa7 cell line by insertion of ER-a into ER-a-negative MDA-MB-231 cells. This line readily formed tumours in athymic mice and was responsive to oestradiol in vivo. In vitro, MDA-ERa7 cells were growth inhibited by globular Acrp30 while the parental cells were not. This inhibition appeared to be due to blockage of JNK2 signalling. These results provide information on how obesity may influence breast cancer cell proliferation and establish a new model to examine interactions between ER and Acrp30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.