Dimethoxybilirubin dimethyl ester and monomethoxybilirubin dimethyl ester were prepared by treating bilirubin with diazomethane, and the correctness of the assigned structures was proved by elemental analysis as well as by i.r. and n.m.r. spectroscopy. The phenylazo compounds derived from monomethoxybilirubin dimethyl ester were also prepared and characterized spectroscopically. Dimethoxybilirubin dimethyl ester occurs in solution as a single molecular species, unlike bilirubin dimethyl ester, which in non-polar solvents exists as an equilibrium mixture of conformational isomers. This difference in the behaviour of the two compounds is explained by the absence of intramolecular hydrogen bonds in dimethoxybilirubin dimethyl ester, a situation that allows free rotation about the central methylene bridge, whereas in bilirubin dimethyl ester an internally hydrogen-bonded conformation can be distinguished by n.m.r. spectroscopy from a non-bonded family of rotamers. This finding is regarded as additional evidence for a newly conceived conformational structure of bilirubin and bilirubin dimethyl ester that is maximally stabilized by intramolecular hydrogen bonds. This is discussed in detail in the Appendix (Kuenzle et al., 1973), which also includes a description of the molecular mechanism pertaining to the reaction of bilirubin with diazomethane.
A novel conformational structure of bilirubin is presented which obtains maximum stabilization through a system of four intramolecular hydrogen bonds. Two hydrogen bonds link oxygen and nitrogen atoms of each end ring to the contralateral carboxyl group. The proposed structure can explain a variety of uncommon features of bilirubin, and reconciles many seemingly contradictory hypotheses by accommodating them in individual structures which are mesomeric forms of one resonance hybrid. In the light of this newly conceived structure the following characteristics of bilirubin are re-evaluated: the stability of the compound, its reaction with diazomethane, the conformational behaviour of its dimethyl ester, its spectral properties, the chirality of the compound when complexed to serum albumin, and the structure of its metal chelates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.