This paper presents a surprising result: changing a seemingly innocuous aspect of an experimental setup can cause a systems researcher to draw wrong conclusions from an experiment. What appears to be an innocuous aspect in the experimental setup may in fact introduce a significant bias in an evaluation. This phenomenon is called measurement bias in the natural and social sciences.Our results demonstrate that measurement bias is significant and commonplace in computer system evaluation. By significant we mean that measurement bias can lead to a performance analysis that either over-states an effect or even yields an incorrect conclusion. By commonplace we mean that measurement bias occurs in all architectures that we tried (Pentium 4, Core 2, and m5 O3CPU), both compilers that we tried (gcc and Intel's C compiler), and most of the SPEC CPU2006 C programs. Thus, we cannot ignore measurement bias. Nevertheless, in a literature survey of 133 recent papers from ASPLOS, PACT, PLDI, and CGO, we determined that none of the papers with experimental results adequately consider measurement bias.Inspired by similar problems and their solutions in other sciences, we describe and demonstrate two methods, one for detecting (causal analysis) and one for avoiding (setup randomization) measurement bias.
This paper presents a surprising result: changing a seemingly innocuous aspect of an experimental setup can cause a systems researcher to draw wrong conclusions from an experiment. What appears to be an innocuous aspect in the experimental setup may in fact introduce a significant bias in an evaluation. This phenomenon is called measurement bias in the natural and social sciences.Our results demonstrate that measurement bias is significant and commonplace in computer system evaluation. By significant we mean that measurement bias can lead to a performance analysis that either over-states an effect or even yields an incorrect conclusion. By commonplace we mean that measurement bias occurs in all architectures that we tried (Pentium 4, Core 2, and m5 O3CPU), both compilers that we tried (gcc and Intel's C compiler), and most of the SPEC CPU2006 C programs. Thus, we cannot ignore measurement bias. Nevertheless, in a literature survey of 133 recent papers from ASPLOS, PACT, PLDI, and CGO, we determined that none of the papers with experimental results adequately consider measurement bias.Inspired by similar problems and their solutions in other sciences, we describe and demonstrate two methods, one for detecting (causal analysis) and one for avoiding (setup randomization) measurement bias.
Sampling has been successfully used to identify performance optimization opportunities. We would like to apply similar techniques to check program correctness. Unfortunately, sampling provides poor coverage of infrequently executed code, where bugs often lurk. We describe an adaptive profiling scheme that addresses this by sampling executions of code segments at a rate inversely proportional to their execution frequency.To validate our ideas, we have implemented SWAT, a novel memory leak detection tool. SWAT traces program allocations/ frees to construct a heap model and uses our adaptive profiling infrastructure to monitor loads/stores to these objects with low overhead. SWAT reports 'stale' objects that have not been accessed for a 'long' time as leaks. This allows it to find all leaks that manifest during the current program execution. Since SWAT has low runtime overhead (< 5%), and low space overhead (< 10% in most cases and often less than 5%), it can be used to track leaks in production code that take days to manifest. In addition to identifying the allocations that leak memory, SWAT exposes where the program last accessed the leaked data, which facilitates debugging and fixing the leak. SWAT has been used by several product groups at Microsoft for the past 18 months and has proved effective at detecting leaks with a low false positive rate (<10%).
Sampling has been successfully used to identify performance optimization opportunities. We would like to apply similar techniques to check program correctness. Unfortunately, sampling provides poor coverage of infrequently executed code, where bugs often lurk. We describe an adaptive profiling scheme that addresses this by sampling executions of code segments at a rate inversely proportional to their execution frequency.To validate our ideas, we have implemented SWAT, a novel memory leak detection tool. SWAT traces program allocations/ frees to construct a heap model and uses our adaptive profiling infrastructure to monitor loads/stores to these objects with low overhead. SWAT reports 'stale' objects that have not been accessed for a 'long' time as leaks. This allows it to find all leaks that manifest during the current program execution. Since SWAT has low runtime overhead (< 5%), and low space overhead (< 10% in most cases and often less than 5%), it can be used to track leaks in production code that take days to manifest. In addition to identifying the allocations that leak memory, SWAT exposes where the program last accessed the leaked data, which facilitates debugging and fixing the leak. SWAT has been used by several product groups at Microsoft for the past 18 months and has proved effective at detecting leaks with a low false positive rate (<10%).
This paper presents a surprising result: changing a seemingly innocuous aspect of an experimental setup can cause a systems researcher to draw wrong conclusions from an experiment. What appears to be an innocuous aspect in the experimental setup may in fact introduce a significant bias in an evaluation. This phenomenon is called measurement bias in the natural and social sciences.Our results demonstrate that measurement bias is significant and commonplace in computer system evaluation. By significant we mean that measurement bias can lead to a performance analysis that either over-states an effect or even yields an incorrect conclusion. By commonplace we mean that measurement bias occurs in all architectures that we tried (Pentium 4, Core 2, and m5 O3CPU), both compilers that we tried (gcc and Intel's C compiler), and most of the SPEC CPU2006 C programs. Thus, we cannot ignore measurement bias. Nevertheless, in a literature survey of 133 recent papers from ASPLOS, PACT, PLDI, and CGO, we determined that none of the papers with experimental results adequately consider measurement bias.Inspired by similar problems and their solutions in other sciences, we describe and demonstrate two methods, one for detecting (causal analysis) and one for avoiding (setup randomization) measurement bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.