Abstract-Bone marrow-derived cells have been proposed to form new vessels or at least incorporate into growing vessels in adult organisms under certain physiological and pathological conditions. We investigated whether bone marrowderived cells incorporate into vessels using mouse models of hindlimb ischemia (arteriogenesis and angiogenesis) and tumor growth. C57BL/6 wild-type mice were lethally irradiated and transplanted with bone marrow cells from littermates expressing enhanced green fluorescent protein (GFP). At least 6 weeks after bone marrow transplantation, the animals underwent unilateral femoral artery occlusions with or without pretreatment with vascular endothelial growth factor or were subcutaneously implanted with methylcholanthrene-induced fibrosarcoma (BFS-1) cells. Seven and 21 days after surgery, proximal hindlimb muscles with growing collateral arteries and ischemic gastrocnemius muscles as well as grown tumors and various organs were excised for histological analysis. We failed to colocalize GFP signals with endothelial or smooth muscle cell markers. Occasionally, the use of high-power laser scanning confocal microscopy uncovered false-positive results because of overlap of different fluorescent signals from adjacent cells. Nevertheless, we observed accumulations of GFP-positive cells around growing collateral arteries (3-fold increase versus nonoccluded side, PϽ0.001) and in ischemic distal hindlimbs. These cells were identified as fibroblasts, pericytes, and primarily leukocytes that stained positive for several growth factors and chemokines.
Abstract-Growth of collateral blood vessels (arteriogenesis) is potentially able to preserve structure and function of limbs and organs after occlusion of a major artery. The success of the remodeling process depends on the following conditions:(1) existence of an arteriolar network that connects the preocclusive with the postocclusive microcirculation; (2) activation of the arteriolar endothelium by elevated fluid shear stress; (3) invasion (but not incorporation) of bone marrow-derived cells; and (4) proliferation of endothelial and smooth muscle cells. Most organs of most mammals including man can rely on the existence of interconnecting arterioles in most organs and tissues with heart being the exception in rodents and pigs. Arterial occlusion lowers the pressure in the distal vasculature thereby creating a pressure gradient favoring increased flow through preexisting collaterals. This increases fluid shear stress leading to endothelial activation with cellular edema, upregulation of adhesion molecules, mitogenic-, thrombogenic-, and fibrinolytic factors, leading to monocyte invasion with matrix digestion. Smooth muscle cells migrate and proliferate and the vessel enlarges under the influence of increasing circumferential wall stress. Growth factors involved belong to the FGF family and signaling proceeds via the Ras/Raf-and the Rho cascades. Increases in vascular radius and wall thickness restore fluid shear stress and circumferential wall stress to normal levels and growth stops. Although increases in collateral vessel size are very substantial their maximal conductance amounts to only 40% of normal. Key Words: arteriogenesis Ⅲ shear stress Ⅲ monocytes Ⅲ vascular remodeling Ⅲ leukocytes A fter birth, blood vessel growth proceeds mainly by two different processes. Angiogenesis describes the growth of new capillaries by sprouting or intussusception and will be reviewed elsewhere in this issue. The driving force for angiogenesis is ischemia. In contrast, arteriogenesis is based on growth and remodeling of preexisting collateral anastomoses. These arterioarteriolar connections belonging to the arcade-like microvascular blood flow distribution system are recruited to function as collateral vessels after the occlusion of a major artery. The initial triggers of arteriogenesis are physical forces like fluid shear stress. Collateral vessel growth includes attraction and invasion of circulating blood cells, proliferation of vascular wall cells, and remodeling processes with digestion and rearrangement of the extracellular matrix and elastic lamina. This review will focus on the mechanisms involved in arteriogenesis.It has become common knowledge for many years that blood vessels regress when not constantly perfused, that they Original
Cardiovascular diseases account for more than half of total mortality before the age of 75 in industrialized countries. To develop therapies promoting the compensatory growth of blood vessels could be superior to palliative surgical surgical interventions. Therefore, much effort has been put into investigating underlying mechanisms. Depending on the initial trigger, growth of blood vessels in adult organisms proceeds via two major processes, angiogenesis and arteriogenesis. While angiogenesis is induced by hypoxia and results in new capillaries, arteriogenesis is induced by physical forces, most importantly fluid shear stress. Consequently, chronically elevated fluid shear stress was found to be the strongest trigger under experimental conditions. Arteriogenesis describes the remodelling of pre-existing arterio-arteriolar anastomoses to completely developed and functional arteries. In both growth processes, enlargement of vascular wall structures was proposed to be covered by proliferation of existing wall cells. Recently, increasing evidence emerges, implicating a pivotal role for circulating cells, above all blood monocytes, in vascular growth processes. Since it has been shown that monocytes/macrophage release a cocktail of chemokines, growth factors and proteases involved in vascular growth, their contribution seems to be of a paracrine fashion. A similar role is currently discussed for various populations of bone-marrow derived stem cells and endothelial progenitors. In contrast, the initial hypothesis that these cells -after undergoing a (trans-)differentiation- contribute by a structural integration into the growing vessel wall, is increasingly challenged.
Arteriogenesis has been associated with the presence of monocytes/macrophages within the collateral vessel wall. We tested the hypothesis that arteriogenesis is functionally linked to the concentration of circulating blood monocytes. Monocyte concentrations in peripheral blood were manipulated by single injections of the antimetabolite 5-fluorouracil (5-FU), resulting in a marked rebound effect in New Zealand White rabbits. Collateral artery growth was assessed by the use of a model of acute femoral artery ligation. Seven days after ligation, collateral conductance and the number of visible collateral arteries were increased in the rebound group. This increase was accompanied by an increased monocyte accumulation as demonstrated by immunohistology in the thigh 3 days after surgery. In a second animal model (129S2/SvHsd mice), 5-FU treatment caused a remarkable decrease in blood monocyte numbers at day 4, followed by a rebound effect at day 12. Foot blood flow, assessed by laser-Doppler imaging before and at various time points after surgery, increased from day 7 through day 21 in mice from the rebound group. In contrast, ligation during the phase of monocyte depletion resulted in a reduction of blood flow reconstitution. This inhibition could be reversed by an injection of isolated monocytes. In conclusion, we have demonstrated a functional link between the monocyte concentration in the peripheral blood and the enhancement of arteriogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.