Molecular dynamics simulations are reported for the evaporation of a liquid into vacuum, where a Lennard-Jones type fluid with truncated and shifted potential at 2.5σ is considered. Vacuum is enforced locally by particle deletion and the liquid is thermostated in its bulk so that heat flows to the planar interface driving stationary evaporation. The length of the non-thermostated transition region between the bulk liquid and the interface Ln is under study. First, it is found for the reduced bulk liquid temperature Tl/Tc = 0.74 (Tc is the critical temperature) that by increasing Ln from 5.2σ to 208σ the interface temperature Ti drops by 17% and the evaporation flux decreases by a factor of 4.4. From a series of simulations for increasing values of Ln, an asymptotic value Ti∞ of the interface temperature for Ln → ∞ can be estimated which is 21% lower than the bulk liquid temperature Tl. Second, it is found that the evaporation flux is solely determined by the interface temperature Ti, independent on Tl or Ln. Combining these two findings, the evaporation coefficient α of a liquid thermostated on a macroscopic scale is estimated to be α ≈ 0.14 for Tl/Tc = 0.74.
Significant improvements are presented for the molecular dynamics code ls1 mardyn — a linked cell-based code for simulating a large number of small, rigid molecules with application areas in chemical engineering. The changes consist of a redesign of the SIMD vectorization via wrappers, MPI improvements and a software redesign to allow memory-efficient execution with the production trunk to increase portability and extensibility. Two novel, memory-efficient OpenMP schemes for the linked cell-based force calculation are presented, which are able to retain Newton’s third law optimization. Comparisons to well-optimized Verlet list-based codes, such as LAMMPS and GROMACS, demonstrate the viability of the linked cell-based approach. The present version of ls1 mardyn is used to run simulations on entire supercomputers, maximizing the number of sampled atoms. Compared to the preceding version of ls1 mardyn on the entire set of 9216 nodes of SuperMUC, Phase 1, 27% more atoms are simulated. Weak scaling performance is increased by up to 40% and strong scaling performance by up to more than 220%. On Hazel Hen, strong scaling efficiency of up to 81% and 189 billion molecule updates per second is attained, when scaling from 8 to 7168 nodes. Moreover, a total of 20 trillion atoms is simulated at up to 88% weak scaling efficiency running at up to 1.33 PFLOPS. This represents a fivefold increase in terms of the number of atoms simulated to date.
The Riemann problem is one of the basic building blocks for numerical methods in computational fluid mechanics. Nonetheless, there are still open questions and gaps in theory and modelling for situations with complex thermodynamic behavior. In this series, we compare numerical solutions of the macroscopic flow equations with molecular dynamics simulation data. To enable molecular dynamics for sufficiently large scales in time and space, we selected the truncated and shifted Lennard-Jones potential, for which also highly accurate equations of state are available. A comparison of a two-phase Riemann problem is shown, which involves a liquid and a vapor phase, with an undergoing phase transition. The loss of hyperbolicity allows for the occurrence of anomalous wave structures. We successfully compare the molecular dynamics data with two macroscopic numerical solutions obtained by either assuming local phase equilibrium or by imposing a kinetic relation and allowing for metastable states.
A nonequilibrium method is developed to sample evaporation of a liquid across a planar interface in a stationary scenario by molecular dynamics. The method does not rely on particle insertions which are challenging when they are used to maintain mass conservation. Its algorithm has a low complexity and is well suited for massively parallel simulations that may yield results with an excellent statistical accuracy. Spatially resolved classical profiles, e.g., for temperature, density, and force, are sampled with a high resolution for a varying hydrodynamic velocity of the evaporation flow. Relatively large systems are simulated, allowing for a detailed study of velocity distribution functions. Varying the hydrodynamic velocity from zero to the speed of sound, it is found that the evaporation flux increases asymptotically, reaching about 90% of its maximum value when the hydrodynamic velocity is about half of its maximum value. A deviation from the Maxwell distribution is identified for the transversal particle velocity near the interface which selectively hinders the migration of individual particles from liquid to vapor with its potential well, allowing only the faster ones to escape. The vapor region in the vicinity of the interface exhibits a spread between the transversal and longitudinal temperature, but equipartition is reattained through particle interactions such that Maxwell distributions are found at a certain distance from the interface. A detailed discussion of the atomistic mechanisms during evaporation is provided, facilitating understanding of this ubiquitous process.
The Riemann problem is one of the basic building blocks for numerical methods in computational fluid mechanics. Nonetheless, there are still open questions and gaps in theory and modelling for situations with complex thermodynamic behavior. In this series, we compare numerical solutions of the macroscopic flow equations with molecular dynamics simulation data. To enable molecular dynamics for sufficiently large scales in time and space, we selected the truncated and shifted Lennard-Jones potential for which also highly accurate equations of state are available. A comparison of a twophase Riemann problem is shown, which involves a liquid and a vapor phase, with an undergoing phase transition. The loss of hyperbolicity allows for the occurrence of anomalous wave structures. We successfully compare the molecular dynamics data with two macroscopic numerical solutions obtained by either assuming local phase equilibrium or by imposing a kinetic relation and allowing for metastable states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.