The existence of across-notation automatic numerical processing of two-digit (2D) numbers was explored using size comparisons tasks. Participants were Arabic speakers, who use two sets of numerical symbols—Arabic and Indian. They were presented with pairs of 2D numbers in the same or in mixed notations. Responses for a numerical comparison task were affected by decade difference and unit-decade compatibility and global distance in both conditions, extending previous findings with Arabic digits (Nuerk, Weger, & Willmes, 2001). Responses for a physical comparison task were affected by congruency with the numerical size, as indicated by the size congruency effect (SiCE). The SiCE was affected by unit-decade compatibility but not by global distance, thus suggesting that the units and decades digits of the 2D numbers, but not the whole number value were automatically translated into a common representation of magnitude. The presence of similar results for same- and mixed-notation pairs supports the idea of an abstract representation of magnitude.
Priming is characterized by a sensitivity of reaction times to the sequence of stimuli in psychophysical experiments. The reduction of the reaction time observed in positive priming is well-known and experimentally understood [Scarborough et al., 1977]. Negative primingthe opposite effect -is experimentally less tangible [Fox, 1995]. The dependence on subtle parameter changes (such as response-stimulus interval) usually varies. The sensitivity of the negative priming effect bears great potential for applications in research in fields such as memory, selective attention, and aging effects.We develop and analyze a computational realization, CISAM, of a recent psychological model for action decision making, the ISAM [Kabisch, 2003], which is sensitive to priming conditions. With the dynamical systems approach of the CISAM, we show that a single adaptive threshold mechanism is sufficient to explain both positive and negative priming effects. This is achieved by comparing results obtained by the computational modeling with experimental data from our lab. The implementation provides a rich base from which testable predictions can be derived, e.g. with respect to hitherto untested stimulus-combinations (e.g. single-object trials).
Glare is a consequence of light scattered within the human eye when looking at bright light sources. This effect can be exploited for tone mapping since adding glare to the depiction of high-dynamic range (HDR) imagery on a low-dynamic range (LDR) medium can dramatically increase perceived contrast. Even though most, if not all, subjects report perceiving glare as a bright pattern that fluctuates in time, up to now it has only been modeled as a static phenomenon. We argue that the temporal properties of glare are a strong means to increase perceived brightness and to produce realistic and attractive renderings of bright light sources. Based on the anatomy of the human eye, we propose a model that enables real-time simulation of dynamic glare on a GPU. This allows an improved depiction of HDR images on LDR media for interactive applications like games, feature films, or even by adding movement to initially static HDR images. By conducting psychophysical studies, we validate that our method improves perceived brightness and that dynamic glare-renderings are often perceived as more attractive depending on the chosen scene.
Figure 1: A naturally illuminated 3D scene (left) and the same scene with 3D unsharp masking enhancement (center). Our enhancement technique is coherent with the scene itself, not simply with each rendered frame, permits arbitrary lighting and is temporally coherent. AbstractWe present a new approach for enhancing local scene contrast by unsharp masking over arbitrary surfaces under any form of illumination. Our adaptation of a well-known 2D technique to 3D interactive scenarios is designed to aid viewers in tasks like understanding complex or detailed geometric models, medical visualization and navigation in virtual environments. Our holistic approach enhances the depiction of various visual cues, including gradients from surface shading, surface reflectance, shadows, and highlights, to ease estimation of viewpoint, lighting conditions, shapes of objects and their world-space organization. Motivated by recent perceptual findings on 3D aspects of the Cornsweet illusion, we create scene coherent enhancements by treating cues in terms of their 3D context; doing so has a stronger effect than approaches that operate in a 2D image context and also achieves temporal coherence. We validate our unsharp masking in 3D with psychophysical experiments showing that the enhanced images are perceived to have better contrast and are preferred over unenhanced originals. Our operator runs at real-time rates on a GPU and the effect is easily controlled interactively within the rendering pipeline.
Event-related potentials (ERPs) were obtained from an identity priming task, where a green target had to be selected against a superimposed red distractor. Several priming conditions were realized in a mix of control (CO), negative priming (NP), and positive priming (PP) trials. PP and NP effects in reaction times (RTs) were significant. ERP results conceptually replicate earlier findings of left-posterior P300 reduction in PP and NP trials compared to CO. This ERP effect may reflect the detection of prime-probe similarity corresponding to the concept of a retrieval cue. A novel finding concerned amplitude increase of the frontal late positive complex (LPC) in the order NP, CO, and PP. NP therefore seemed to induce brain activity related to cognitive control and/or memory processes, with reduced LPC amplitude indicating effortful processing. Overall, retrieval-based explanations of identity NP are supported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.