Cartilage oligomeric matrix protein (COMP) is an abundant component in the extracellular matrix (ECM) of load-bearing tissues such as tendons and cartilage. It provides adaptor functions by bridging different ECM structures. We have previously shown that COMP is also a constitutive component of healthy human skin and is strongly induced in fibrosis. It binds directly and with high affinity to collagen I and to collagen XII that decorates the surface of collagen I fibrils. We demonstrate here that lack of COMP-collagen interaction in the extracellular space leads to changes in collagen fibril morphology and density, resulting in altered skin biomechanical properties. Surprisingly, COMP also fulfills an important intracellular function in assisting efficient secretion of collagens, which were retained in the endoplasmic reticulum of COMP-null fibroblasts. Accordingly, COMPnull mice showed severely attenuated fibrotic responses in skin. Collagen secretion was fully restored by introducing wild-type COMP. Hence, our work unravels a new, non-structural and intracellular function of the ECM protein COMP in controlling collagen secretion.
Collagen IX (Col IX) is a component of the cartilage extracellular matrix and contributes to its structural integrity. Polymorphisms in the genes encoding the Col IX ɑ2- and ɑ3-chains are associated with early onset of disc degeneration. Col IX-deficient mice already display changes in the spine at the newborn stage and premature disc degeneration starting at 6 months of age. To determine the role of Col IX in early spine development and to identify molecular mechanisms underlying disc degeneration, the embryonic development of the spine was analyzed in Col IX -/- mice. Histological staining was used to show tissue morphology at different time points. Localization of extracellular matrix proteins as well as components of signaling pathways were analyzed by immunohistochemistry. Developing vertebral bodies of Col IX -/- mice were smaller and already appeared more compact at E12.5. At E15.5, vertebral bodies of Col IX -/- mice revealed an increased number of hypertrophic chondrocytes as well as enhanced staining for the terminal differentiation markers alkaline phosphatase and collagen X. This correlates with an imbalance in the Ihh-PTHrP signaling pathway at this time point, reflected by an increase of Ihh and a concomitant decrease of PTHrP expression. An accelerated hypertrophic differentiation caused by a disturbed Ihh-PTHrP signaling pathway may lead to a higher bone mineral density in the vertebral bodies of newborn Col IX -/- mice and, as a result, to the early onset of disc degeneration.
In contrast to collagen II and matrilin-3, COMP lacks the ability to trigger a proinflammatory response in chondrocytes, although it carries an RGD motif and can bind to integrins. COMP is a well-accepted biomarker for osteoarthritis but increased COMP levels do not necessarily correlate with inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.