We consider a partial differential inclusion problem which models stress-free martensitic inclusions in an austenitic matrix, based on the standard geometrically nonlinear elasticity theory. We show that for specific parameter choices there exist piecewise affine continuous solutions for the square-to-oblique and the hexagonal-to-oblique phase transitions. This suggests that for specific crystallographic parameters the hysteresis of the phase transformation will be particularly small.
This article includes a short survey of selected averaging and dimension reduction techniques for deterministic fast–slow systems. This survey includes, among others, classical techniques, such as the WKB approximation or the averaging method, as well as modern techniques, such as the GENERIC formalism. The main part of this article combines ideas of some of these techniques and addresses the problem of deriving a reduced system for the slow degrees of freedom (DOF) of a fast–slow Hamiltonian system. In the first part, we derive an asymptotic expansion of the averaged evolution of the fast–slow system up to second order, using weak convergence techniques and two-scale convergence. In the second part, we determine quantities which can be interpreted as temperature and entropy of the system and expand these quantities up to second order, using results from the first part. The results give new insights into the thermodynamic interpretation of the fast–slow system at different scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.