Virtual testing is a significant part of the product development process. It is possible to completely solve many problems through the interaction of geometric models, simulation tools, human models with the help of the appropriate software. If, in the course of testing, it is necessary to take into account subjective human perception, one may profitably use a full-size system for immersive projection (VR system). Such a system particularly makes sense in evaluating manufacturing, operating, application or maintenance. The human being interacts with a product whose physical shape does not yet exist in a virtual environment. In this case, the movements of product components are generally indirectly controlled by using a flystick, a wand or a similar input device. In reality many operations in maintenance are determined by the position and posture of the maintenance personal as well as by the mass, center of gravity and dimensions of the object to be manipulated. In a Mixed Reality Environment, it is possible to achieve a meaningful subjective ergonomic evaluation of the abovementioned operations. The paper elucidates a strategy to integrate real product components into a virtual environment. The user applies the real components or tools in the immersive full-size projection of the VR system. The VR system tracks the real object. This way, it is possible to move an invisible object model in the VR system in sync with the movements of the real object. The collision detection tool provided in the VR system is available and signalises contact of the real object with the virtual environment. The demonstrated solution is under consideration for the planning and ergonomic evaluation of service activities. The need of industry for a process that can be controlled in a safe manner is of particular concern. The solution given here is aimed at maintenance to be performed on the brake system of a light-duty truck.
Reverse Engineering methods are becoming more and more important in product development processes in cases without CAD models or modified physical objects. For numerical calculations of scanned components, using, for instance, the Finite Element Method (FEM) to look at strength or vibration characteristics, we need the previously scanned data, obtained via Geometric Reverse Engineering, to be converted into CAD surface data, a Finite Element-meshing and a determination of material parameters and constraints. Tremendous effort must be expended in the course of performing repeated Geometric Reverse Engineering and FE-meshing, which must be done when there are iterative, largely local changes in real geometry (such as when incorporating forming dies) or in the case of topologically similar objects, which must be scanned again and again. This project is aimed at the generation of new calculation models using an appropriate adaption of existing FE meshes (made using a CAD model, for example) or FE meshes previously created with the help of scan data through the retention of intelligent meshing (constraints, material, element type etc.). In terms of their topology, these new meshes should adapt themselves to changes in geometry. Time-consuming Geometric Reverse Engineering, as well as re-meshing, can thus be bypassed. Product development cycles frequently proceed in an iterative manner. Repetition of process steps is intended to improve the product in order to achieve an optimum result in design and dimensioning. The goal of these research activities is to reduce the process steps from 3D scan data to FE-meshing, in particular in development cycles. The paper introduces the project’s concept, its initial results, and further steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.