Specific morphological and biochemical characteristics of seeds can cause oxygen deficiency within maternal and embryonic tissues. In this study, optical sensors were used to measure O(2) profiles across developing seeds of Vicia faba and Pisum sativum and developmental and environmental modulations of internal O(2) levels were studied. In addition, the metabolic state of developing embryos was analysed by monitoring adenylate energy charge, adenylate nucleotides and the levels of nucleotide sugars. Within the seed coat O(2) concentration decreased sharply to approximately 3% towards the inner border. Lowest O(2) levels were detected within the endospermal cavity between the seed coat and embryo. It is probable that low seed coat permeability provides an hypoxic environment for legume embryo development. The O(2) concentration in embryonic tissue changed during development with the lowest levels in the early stages. Measured in darkness, the levels were below 3%, but increased upon illumination indicating that photosynthesis significantly contributes to internal O(2) levels. Only in very young embryos were ATP levels and energy charge low. Otherwise they were maintained at a constant higher value. ADP-glucose and UDP-glucose did not show large fluctuations. Throughout embryo development fermentative activity did not play a major role. Obviously, specific mechanisms prevent seed tissues from becoming anoxic during development. The possible role of low oxygen on seed metabolism and on the control of seed development in legumes is discussed.
Abstract. Stream networks have recently been discovered to be major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without crosscomparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams with different flow velocities. The study clearly shows that (1) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (2) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil collar to seal the chambers to the water surface, rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.
In the paper "Oxidation of atmospheric methane in soil: Measurements in the field, in soil, and in soil samples" by Matthias Koschorreckand Ralf Conrad (Global Biogeochemical Cycles, 3(1), 109-121, 1993), the first-order rate constant given in the footnote of Table 4 should be -0.004 min 4, rather than -0.004 h 4. Correspondingly, the last sentence of the first paragraph on page 118 should be changed from "In all cases, relaxation was much faster than the first-order rate constant of the CH4 flux measured in soil cores which was on the average about 0.004 h 4 •'able 4)" to read "In all cases where relaxation and CH4 oxidation was measured simultaneously, relaxation was 2 to 3 times faster than the first-order rate constant of the CH4 flux measured in soil cores."
It is now well established that microbial sulphate-reduction can proceed in environments with a pH<5. This review summarizes existing reports on sulphate reduction at low pH and discusses possible pH effects on sulphate-reducing bacteria. Microbial sulphate reduction has been observed in acidic lakes, wetlands, mesocosms, acidic sulphate soils and bioreactors. Possible inhibitory factors include the metabolites H(2)S and organic acids, which can be toxic depending on pH. Metal sulphide precipitation and competition with other bacteria, namely iron-reducing bacteria, can inhibit sulphate reduction. Theoretical considerations show that normal sulphate reduction rates are too low to maintain a neutral micro niche in an acidic environment. The first acidotolerant sulphate-reducing bacteria have been isolated recently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.