Bovine milk is a nutritionally rich, chemically complex biofluid consisting of hundreds of different components. While the chemical composition of cow's milk has been studied for decades, much of this information is fragmentary and very dated. In an effort to consolidate and update this information, we have applied modern, quantitative metabolomics techniques along with computer-aided literature mining to obtain the most comprehensive and up-to-date characterization of the chemical constituents in commercial cow's milk. Using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography−mass spectrometry (LC−MS), and inductively coupled plasma−mass spectrometry (ICP−MS), we were able to identify and quantify 296 bovine milk metabolites or metabolite species (corresponding to 1447 unique structures) from a variety of commercial milk samples. Through our literature analysis, we also found another 676 metabolites or metabolite species (corresponding to 908 unique structures). Detailed information regarding all 2355 of the identified chemicals in bovine milk have been made freely available through a Web-accessible database called the Milk Composition Database or MCDB (http://www.mcdb.ca/).
As Streptomyces have shown an outstanding capacity for drug production, different campaigns in geographically distant locations currently aim to isolate new antibiotic producers. However, many of these newly isolated Streptomyces strains are classified as identical to already described species. Nevertheless, as discrepancies in terms of secondary metabolites and morphology are possible, we compared two Streptomyces strains with identical 16S rRNA gene sequences but geographically distant origins. Chosen were an Easter Island Streptomyces isolate (Streptomyces sp. SN25_8.1) and the next related type strain, which is Streptomyces griseus subsp. griseus DSM 40236T isolated from Russian garden soil. Compared traits included phylogenetic relatedness based on 16S rRNA gene sequences, macro and microscopic morphology, antibiotic activity and secondary metabolite profiles. Both Streptomyces strains shared several common features, such as morphology and core secondary metabolite production. They revealed differences in pigmentation and in the production of accessory secondary metabolites which appear to be strain-specific. In conclusion, despite identical 16S rRNA classification Streptomyces strains can present different secondary metabolite profiles and may well be valuable for consideration in processes for drug discovery.
The lithiation of halogenated azobenzenes by halogen-lithium exchange commonly leads to substantial degradation of the azo group to give hydrazine derivatives besides the desired aryl lithium species. Yields of quenching reactions with electrophiles are therefore low. This work shows that a transmetalation reaction of easily accessible stannylated azobenzenes with methyllithium leads to a near-quantitative lithiation of azobenzenes in para, meta, and ortho positions. To investigate the scope of the reaction, various lithiated azobenzenes were quenched with a variety of electrophiles. Furthermore, mechanistic (119) Sn NMR spectroscopic studies on the formation of lithiated azobenzenes are presented. A tin ate complex of the azobenzene was detected and characterized at low temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.