Summary Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on the German Medical Informatics Initiative. “Smart Medical Information Technology for Healthcare (SMITH)” is one of four consortia funded by the German Medical Informatics Initiative (MI-I) to create an alliance of universities, university hospitals, research institutions and IT companies. SMITH’s goals are to establish Data Integration Centers (DICs) at each SMITH partner hospital and to implement use cases which demonstrate the usefulness of the approach. Objectives: To give insight into architectural design issues underlying SMITH data integration and to introduce the use cases to be implemented. Governance and Policies: SMITH implements a federated approach as well for its governance structure as for its information system architecture. SMITH has designed a generic concept for its data integration centers. They share identical services and functionalities to take best advantage of the interoperability architectures and of the data use and access process planned. The DICs provide access to the local hospitals’ Electronic Medical Records (EMR). This is based on data trustee and privacy management services. DIC staff will curate and amend EMR data in the Health Data Storage. Methodology and Architectural Framework: To share medical and research data, SMITH’s information system is based on communication and storage standards. We use the Reference Model of the Open Archival Information System and will consistently implement profiles of Integrating the Health Care Enterprise (IHE) and Health Level Seven (HL7) standards. Standard terminologies will be applied. The SMITH Market Place will be used for devising agreements on data access and distribution. 3LGM 2 for enterprise architecture modeling supports a consistent development process. The DIC reference architecture determines the services, applications and the standards-based communication links needed for efficiently supporting the ingesting, data nourishing, trustee, privacy management and data transfer tasks of the SMITH DICs. The reference architecture is adopted at the local sites. Data sharing services and the market place enable interoperability. Use Cases: The methodological use case “Phenotype Pipeline” (PheP) constructs algorithms for annotations and analyses of patient-related phenotypes according to classification rules or statistical models based on structured data. Unstructured textual data will be subject to natural language processing to permit integration into the phenotyping algorithms. The clinical use case “Algorithmic Surveillance of ICU Patients” (ASIC) focusses on patients in Intensive Care Units (ICU) with the acute respiratory distress syndrome (ARDS). A model-based decision-support system will give advice for mechanical ventilation. The clinical use case HELP develops a “hospital-wide electronic medical record-based computerized decision support system to improve outcomes of patients with blood-stream infections” (HELP). ASIC and HELP ...
In order to support empirical medical research concerning reuse and improvement of the expressiveness of study data and hence promote syntactic as well as semantic interoperability, services are required for the maintenance of data element collections. As part of the project for the implementation of a German metadata repository for empirical research we assessed the ability of ISO/IEC 11179 "Information technology - Metadata registries (MDR)" part 3 edition 3 Final Committee Draft "Registry metamodel and basic attributes" to represent healthcare standards. First step of the evaluation was a reformulation of ISO's metamodel with the terms and structures of the different healthcare standards. In a second step, we imported instances of the healthcare standards into a prototypical database implementation representing ISO's metamodel. Whereas the flat structure of disease registries as well as some controlled vocabularies could be easily mapped to the ISO's metamodel, complex structures as used in reference models of electronic health records or classifications could be not exhaustively represented. A logical reconstruction of an application will be needed in order to represent them adequately. Moreover, the correct linkage between elements from ISO/IEC 11179 edition 3 and concepts of classifications remains unclear. We also observed some restrictions of ISO/IEC 11179 edition 3 concerning the representation of items of the Operational Data Model from the Clinical Data Interchange Standards Consortium, which might be outside the scope of a MDR. Thus, despite the obvious strength of the ISO/IEC 11179 edition 3 for metadata registries, some issues should be considered in its further development.
Background Timely antimicrobial treatment and source control are strongly recommended by sepsis guidelines, however, their impact on clinical outcomes is uncertain. Methods We performed a planned secondary analysis of a cluster-randomized trial conducted from July 2011 to May 2015 including forty German hospitals. All adult patients with sepsis treated in the participating ICUs were included. Primary exposures were timing of antimicrobial therapy and delay of surgical source control during the first 48 h after sepsis onset. Primary endpoint was 28-day mortality. Mixed models were used to investigate the effects of timing while adjusting for confounders. The linearity of the effect was investigated by fractional polynomials and by categorizing of timing. Results Analyses were based on 4792 patients receiving antimicrobial treatment and 1595 patients undergoing surgical source control. Fractional polynomial analysis identified a linear effect of timing of antimicrobials on 28-day mortality, which increased by 0.42% per hour delay (OR with 95% CI 1.019 [1.01, 1.028], p ≤ 0.001). This effect was significant in patients with and without shock (OR = 1.018 [1.008, 1.029] and 1.026 [1.01, 1.043], respectively). Using a categorized timing variable, there were no significant differences comparing treatment within 1 h versus 1–3 h, or 1 h versus 3–6 h. Delays of more than 6 h significantly increased mortality (OR = 1.41 [1.17, 1.69]). Delay in antimicrobials also increased risk of progression from severe sepsis to septic shock (OR per hour: 1.051 [1.022, 1.081], p ≤ 0.001). Time to surgical source control was significantly associated with decreased odds of successful source control (OR = 0.982 [0.971, 0.994], p = 0.003) and increased odds of death (OR = 1.011 [1.001, 1.021]; p = 0.03) in unadjusted analysis, but not when adjusted for confounders (OR = 0.991 [0.978, 1.005] and OR = 1.008 [0.997, 1.02], respectively). Only, among patients with septic shock delay of source control was significantly related to risk-of death (adjusted OR = 1.013 [1.001, 1.026], p = 0.04). Conclusions Our findings suggest that management of sepsis is time critical both for antimicrobial therapy and source control. Also patients, who are not yet in septic shock, profit from early anti-infective treatment since it can prevent further deterioration. Trial registration ClinicalTrials.gov (NCT01187134). Registered 23 August 2010, NCT01187134
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.