The identification and isolation of highly infectious SARS-CoV-2-infected individuals is an important public health strategy. Rapid antigen detection tests (RADT) are promising candidates for large-scale screenings due to timely results and feasibility for on-site testing. Nonetheless, the diagnostic performance of RADT in detecting infectious individuals is yet to be fully determined. In this study, RT-qPCR and virus culture of RT-qPCR positive samples were used to evaluate and compare the performance of the Standard Q COVID-19 Ag Test in detecting SARS-CoV-2 infected and possibly infectious individuals. To this end, two combined oro- and nasopharyngeal swabs were collected at a routine SARS-CoV-2 diagnostic center. A total of 2,028 samples were tested and 118 virus cultures inoculated. SARS-CoV-2 infection was detected in 210 samples by RT-qPCR, representing a positive rate of 10.36%. The Standard Q COVID-19 Ag Test yielded a positive result in 92 (4.54%) samples resulting in an overall sensitivity and specificity of 42.86% and 99.89%. For adjusted Ct values <20 (n=14), <25 (n=57), and <30 (n=88) the RADT reached sensitivities of 100%, 98.25%, and 88.64%, respectively. All 29 culture positive samples were detected by RADT. While overall sensitivity was low, Standard Q COVID-19 RADT reliably detected patients with high RNA loads. Additionally, negative RADT results fully corresponded with the lack of viral cultivability in Vero E6 cells. These results indicate that RADT can be a valuable tool for the detection of individuals that are likely to transmit SARS-CoV-2. RADT testing could therefore guide public health testing strategies to combat the COVID-19 pandemic.
The identification and isolation of highly infectious SARS-CoV-2-infected individuals is an important public health strategy. Rapid antigen detection tests (RADT) are promising candidates for large-scale screenings due to timely results and feasibility for on-site testing. Nonetheless, the diagnostic performance of RADT in detecting infectious individuals is yet to be fully determined. Two combined oro- and nasopharyngeal swabs were collected from individuals at a routine SARS-CoV-2 diagnostic center. Side-by-side evaluations of RT-qPCR and RADT as well as live virus cultures of positive samples were performed to determine the sensitivity of the Standard Q COVID-19 Ag Test (SD Biosensor/Roche) in detecting SARS-CoV-2-infected individuals with cultivable virus. A total of 2,028 samples were tested and 118 virus cultures inoculated. SARS-CoV-2 infection was detected in 210 samples by RT-qPCR, representing a positive rate of 10.36%. The Standard Q COVID-19 Ag Test yielded a positive result in 92 (4.54%) samples resulting in an overall sensitivity and specificity of 42.86% and 99.89%. For adjusted Ct values <20, <25, and <30 the RADT reached sensitivities of 100%, 98.15%, and 88.64%, respectively. All 29 culture positive samples were detected by RADT. While overall sensitivity was low, Standard Q COVID-19 RADT reliably detected patients with high RNA loads. Additionally, negative RADT results fully corresponded with the lack of viral cultivability in Vero E6 cells. These results indicate that RADT can be a valuable tool for the detection of individuals that are likely to transmit SARS-CoV-2. RADT testing could therefore guide public health testing strategies to combat the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.